@article{DamesZimmermannSchmidtetal.2006, author = {Dames, Petra and Zimmermann, Bernhard and Schmidt, Ruth and Rein, Julia and Voss, Martin and Schewe, Bettina and Walz, Bernd and Baumann, Otto}, title = {cAMP regulates plasma membrane vacuolar-type H+-ATPase assembly and activity in blowfly salivary glands}, issn = {0027-8424}, doi = {10.1073/pnas.0600011103}, year = {2006}, abstract = {Reversible assembly of the V0V1 holoenzyme from V-0 and V-1 subcomplexes is a widely used mechanism for regulation of vacuolar-type H+-ATPases (V-ATPases) in animal cells. in the blowfly (Calliphora vicina) salivary gland, V- ATPase is located in the apical membrane of the secretory cells and energizes the secretion of a KCl-rich saliva in response to the hormone serotonin. We have examined whether the CAMP pathway, known to be activated by serotonin, controls V-ATPase assembly and activity. Fluorescence measurements of pH changes at the luminal surface of isolated glands demonstrate that CAMP, Sp-adenosine-3',5'-cyclic monophosphorothioate, or forskolin, similar to serotonin, cause V-ATPase-dependent luminal acidification. In addition, V-ATPase-dependent ATP hydrolysis increases upon treatment with these agents. Immunofluorescence microscopy and pelleting assays have demonstrated further that V, components become translocated from the cytoplasm to the apical membrane and V-ATPase holoenzymes are assembled at the apical membrane during conditions that increase intracellular cAMP. Because these actions occur without a change in cytosolic Ca2+, our findings suggest that the cAMP pathway mediates the reversible assembly and activation of V-ATPase molecules at the apical membrane upon hormonal stimulus}, language = {en} } @article{VossFechnerWalzetal.2010, author = {Voss, Martin and Fechner, Lennart and Walz, Bernd and Baumann, Otto}, title = {Calcineurin activity augments cAMP/PKA-dependent activation of V-ATPase in blowfly salivary glands}, issn = {0363-6143}, doi = {10.1152/ajpcell.00328.2009}, year = {2010}, abstract = {We have examined the role of the Ca2+-dependent protein phosphatase 2B (calcineurin) in the regulation of the vacuolar H+-ATPase (V-ATPase) in blowfly salivary glands. In response to the neurohormone serotonin [5-hydroxytryptamine (5-HT)] and under the mediation of the cAMP/PKA signaling pathway, the secretory cells assemble and activate V-ATPase molecules at the apical membrane. We demonstrate that the inhibition of calcineurin activity by cyclosporin A, by FK- 506, or by prevention of the elevation of Ca2+ diminishes the 5-HT-induced assembly and activation of V-ATPase. The effect of calcineurin on V-ATPase is mediated by the cAMP/PKA signaling pathway, with calcineurin acting upstream of PKA, because 1) cyclosporin A does not influence the 8-(4-chlorophenylthio) adenosine-3',5'-cyclic monophosphate (8-CPT-cAMP)-induced activation of V-ATPase, and 2) the 5-HT-induced rise in cAMP is highly reduced in the presence of cyclosporin A. Moreover, a Ca2+ rise evoked by the sarco(endo) plasmic reticulum Ca2+-ATPase (SERCA) inhibitor cyclopiazonic acid leads to an increase in intracellular cAMP concentration and a calcineurin-mediated PKA- dependent activation of V-ATPase. We propose that calcineurin activity mediates cross talk between the inositol 1,4,5- trisphosphate/Ca2+ and the cAMP/PKA signaling pathways, thereby augmenting the 5-HT-induced rise in cAMP and thus the cAMP/PKA-mediated activation of V-ATPase.}, language = {en} } @article{VossNimtzLeimkuehler2011, author = {Voss, Martin and Nimtz, Manfred and Leimk{\"u}hler, Silke}, title = {Elucidation of the dual role of Mycobacterial MoeZR in Molybdenum Cofactor Biosynthesis and Cysteine Biosynthesis}, series = {PLoS one}, volume = {6}, journal = {PLoS one}, number = {11}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0028170}, pages = {9}, year = {2011}, abstract = {The pathway of molybdenum cofactor biosynthesis has been studied in detail by using proteins from Mycobacterium species, which contain several homologs associated with the first steps of Moco biosynthesis. While all Mycobacteria species contain a MoeZR, only some strains have acquired an additional homolog, MoeBR, by horizontal gene transfer. The role of MoeBR and MoeZR was studied in detail for the interaction with the two MoaD-homologs involved in Moco biosynthesis, MoaD1 and MoaD2, in addition to the CysO protein involved in cysteine biosynthesis. We show that both proteins have a role in Moco biosynthesis, while only MoeZR, but not MoeBR, has an additional role in cysteine biosynthesis. MoeZR and MoeBR were able to complement an E. coli moeB mutant strain, but only in conjunction with the Mycobacterial MoaD1 or MoaD2 proteins. Both proteins were able to sulfurate MoaD1 and MoaD2 in vivo, while only MoeZR additionally transferred the sulfur to CysO. Our in vivo studies show that Mycobacteria have acquired several homologs to maintain Moco biosynthesis. MoeZR has a dual role in Moco- and cysteine biosynthesis and is involved in the sulfuration of MoaD and CysO, whereas MoeBR only has a role in Moco biosynthesis, which is not an essential function for Mycobacteria.}, language = {en} } @article{VossSchmidtWalzetal.2009, author = {Voss, Martin and Schmidt, Ruth and Walz, Bernd and Baumann, Otto}, title = {Stimulus-induced translocation of the protein kinase A catalytic subunit to the apical membrane in blowfly salivary glands}, issn = {0302-766X}, doi = {10.1007/s00441-008-0673-x}, year = {2009}, abstract = {Secretion in blowfly (Calliphora vicina) salivary glands is regulated by the neurohormone serotonin (5-HT), which activates the InsP(3)/Ca2+ pathway and the cAMP/protein kinase A (PKA) pathway in the secretory cells. The latter signaling cascade induces the activation of a vacuolar H+-ATPase on the apical membrane. Here, we have determined the distribution of PKA by using antibodies against the PKA regulatory subunit-II (PKA-RII) and the PKA catalytic subunit (PKA-C) of Drosophila. PKA is present in high concentrations within the secretory cells. PKA-RII and PKA-C co-distribute in non-stimulated glands, being enriched in the basal portion of the secretory cells. Exposure to 8-CPT-cAMP or 5-HT induces the translocation of PKA-C to the apical membrane, whereas the PKA-RII distribution remains unchanged. The recruitment of PKA-C to the apical membrane corroborates our hypothesis that vacuolar H+-ATPase, which is enriched in this membrane domain, is a target protein for PKA.}, language = {en} } @article{WalterCastroVossetal.2009, author = {Walter, Juliane K. and Castro, Victor Manuel and Voss, Martin and Gast, Klaus and Rueckert, Christine and Piontek, J{\"o}rg and Blasig, Ingolf E.}, title = {Redox-sensitivity of the dimerization of occludin}, issn = {1420-682X}, doi = {10.1007/s00018-009-0150-z}, year = {2009}, abstract = {Occludin is a self-associating transmembrane tight junction protein affected in oxidative stress. However, its function is unknown. The cytosolic C-terminal tail contains a coiled coil-domain forming dimers contributing to the self- association. Studying the hypothesis that the self-association is redox-sensitive, we found that the dimerization of the domain depended on the sulfhydryl concentration of the environment in low-millimolar range. Under physiological conditions, monomers and dimers were detected. Masking the sulfhydryl residues in the domain prevented the dimerization but affected neither its helical structure nor cylindric shape. Incubation of cell extracts containing full-length occludin with sulfhydryl reagents prevented the dimerization; a cysteine/alanine exchange mutant also did not show dimer formation. This demonstrates, for the first time, that disulfide bridge formation of the domain is involved in the occludin dimerization. It is concluded that the redox-dependent dimerization of occludin may play a regulatory role in the tight junction assembly under physiological and pathological conditions.}, language = {en} } @article{WalterRueckertVossetal.2009, author = {Walter, Juliane K. and R{\"u}ckert, Christine and Voss, Martin and M{\"u}ller, Sebastian L. and Piontek, Joerg and Gast, Klaus and Blasig, Ingolf E.}, title = {The oligomerization of the coiled coil-domain of occluddin is redox sensitive}, issn = {0077-8923}, doi = {10.1111/j.1749-6632.2009.04058.x}, year = {2009}, abstract = {The transmembrane tight junction protein occludin is sensitive to oxidative stress. Occludin oligomerizes; however, its function in the tight junction is unknown. The cytosolic C-terminal tail contains a coiled coil-domain and forms dimers contributing to the oligomerization. The regulation of the oligomerization remains unclear. As the domain area contains sulfhydryl residues, we tested the hypothesis that the dimerization of the coiled coil-domain depends on these residues. We showed that the dimerization is modulated by the thiol concentration in the low-millimolar range, which is relevant both for physiological and pathophysiological conditions. Masking the sulfhydryl residues in the fragment by covalent binding of 4-vinyl pyridine prevented the dimerization but did not affect its helical structure and cylindric shape. The data demonstrate, for the first time, that disulfide bridge formation of murine cystein 408 is involved in the dimerization. This process is redox-sensitive but the secondary structure of the domain is not. It is concluded that the dimerization of occludin may play a regulatory role in the tight junction assembly under physiological and pathological conditions.}, language = {en} }