@article{HeckKanehiraKneippetal.2018, author = {Heck, Christian and Kanehira, Yuya and Kneipp, Janina and Bald, Ilko}, title = {Placement of Single Proteins within the SERS Hot Spots of Self-Assembled Silver Nanolenses}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {57}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {25}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201801748}, pages = {7444 -- 7447}, year = {2018}, abstract = {This study demonstrates the bottom-up synthesis of silver nanolenses. A robust coating protocol enabled the functionalization of differently sized silver nanoparticles with DNA single strands of orthogonal sequence. Coated particles 10nm, 20nm, and 60nm in diameter were self-assembled by DNA origami scaffolds to form silver nanolenses. Single molecules of the protein streptavidin were selectively placed in the gap of highest electric field enhancement. Streptavidin labelled with alkyne groups served as model analyte in surface-enhanced Raman scattering (SERS) experiments. By correlated Raman mapping and atomic force microscopy, SERS signals of the alkyne labels of a single streptavidin molecule, from a single silver nanolens, were detected. The discrete, self-similar aggregates of solid silver nanoparticles are promising for plasmonic applications.}, language = {en} } @article{MorgnerStuflerGeissleretal.2011, author = {Morgner, Frank and Stufler, Stefan and Geissler, Daniel and Medintz, Igor L. and Algar, W. Russ and Susumu, Kimihiro and Stewart, Michael H. and Blanco-Canosa, Juan B. and Dawson, Philip E. and Hildebrandt, Niko}, title = {Terbium to quantum dot FRET Bioconjugates for clinical diagnostics influence of human plasma on optical and assembly properties}, series = {Sensors}, volume = {11}, journal = {Sensors}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s111009667}, pages = {9667 -- 9684}, year = {2011}, abstract = {Forster resonance energy transfer (FRET) from luminescent terbium complexes (LTC) as donors to semiconductor quantum dots (QDs) as acceptors allows extraordinary large FRET efficiencies due to the long Forster distances afforded. Moreover, time-gated detection permits an efficient suppression of autofluorescent background leading to sub-picomolar detection limits even within multiplexed detection formats. These characteristics make FRET-systems with LTC and QDs excellent candidates for clinical diagnostics. So far, such proofs of principle for highly sensitive multiplexed biosensing have only been performed under optimized buffer conditions and interactions between real-life clinical media such as human serum or plasma and LTC-QD-FRET-systems have not yet been taken into account. Here we present an extensive spectroscopic analysis of absorption, excitation and emission spectra along with the luminescence decay times of both the single components as well as the assembled FRET-systems in TRIS-buffer, TRIS-buffer with 2\% bovine serum albumin, and fresh human plasma. Moreover, we evaluated homogeneous LTC-QD FRET assays in QD conjugates assembled with either the well-known, specific biotin-streptavidin biological interaction or, alternatively, the metal-affinity coordination of histidine to zinc. In the case of conjugates assembled with biotin-streptavidin no significant interference with the optical and binding properties occurs whereas the histidine-zinc system appears to be affected by human plasma.}, language = {en} }