@article{vanKleunenEsslPergletal.2018, author = {van Kleunen, Mark and Essl, Franz and Pergl, Jan and Brundu, Giuseppe and Carboni, Marta and Dullinger, Stefan and Early, Regan and Gonzalez-Moreno, Pablo and Groom, Quentin J. M. and Hulme, Philip E. and Kueffer, Christoph and K{\"u}hn, Ingolf and Maguas, Cristina and Maurel, Noelie and Novoa, Ana and Parepa, Madalin and Pysek, Petr and Seebens, Hanno and Tanner, Rob and Touza, Julia and Verbrugge, Laura and Weber, Ewald and Dawson, Wayne and Kreft, Holger and Weigelt, Patrick and Winter, Marten and Klonner, Guenther and Talluto, Matthew V. and Dehnen-Schmutz, Katharina}, title = {The changing role of ornamental horticulture in alien plant invasions}, series = {Biological reviews}, volume = {93}, journal = {Biological reviews}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {1464-7931}, doi = {10.1111/brv.12402}, pages = {1421 -- 1437}, year = {2018}, abstract = {The number of alien plants escaping from cultivation into native ecosystems is increasing steadily. We provide an overview of the historical, contemporary and potential future roles of ornamental horticulture in plant invasions. We show that currently at least 75\% and 93\% of the global naturalised alien flora is grown in domestic and botanical gardens, respectively. Species grown in gardens also have a larger naturalised range than those that are not. After the Middle Ages, particularly in the 18th and 19th centuries, a global trade network in plants emerged. Since then, cultivated alien species also started to appear in the wild more frequently than non-cultivated aliens globally, particularly during the 19th century. Horticulture still plays a prominent role in current plant introduction, and the monetary value of live-plant imports in different parts of the world is steadily increasing. Historically, botanical gardens - an important component of horticulture - played a major role in displaying, cultivating and distributing new plant discoveries. While the role of botanical gardens in the horticultural supply chain has declined, they are still a significant link, with one-third of institutions involved in retail-plant sales and horticultural research. However, botanical gardens have also become more dependent on commercial nurseries as plant sources, particularly in North America. Plants selected for ornamental purposes are not a random selection of the global flora, and some of the plant characteristics promoted through horticulture, such as fast growth, also promote invasion. Efforts to breed non-invasive plant cultivars are still rare. Socio-economical, technological, and environmental changes will lead to novel patterns of plant introductions and invasion opportunities for the species that are already cultivated. We describe the role that horticulture could play in mediating these changes. We identify current research challenges, and call for more research efforts on the past and current role of horticulture in plant invasions. This is required to develop science-based regulatory frameworks to prevent further plant invasions.}, language = {en} } @article{ZuppingerDingleySchmidChenetal.2011, author = {Zuppinger-Dingley, D. and Schmid, Bernhard and Chen, Y. and Brandl, H. and van der Heijden, M. G. A. and Joshi, Jasmin Radha}, title = {In their native range, invasive plants are held in check by negative soil-feedbacks}, series = {Ecosphere : the magazine of the International Ecology University}, volume = {2}, journal = {Ecosphere : the magazine of the International Ecology University}, number = {5}, publisher = {Wiley}, address = {Washington}, issn = {2150-8925}, doi = {10.1890/ES11-00061.1}, pages = {12}, year = {2011}, abstract = {The ability of some plant species to dominate communities in new biogeographical ranges has been attributed to an innate higher competitive ability and release from co-evolved specialist enemies. Specifically, invasive success in the new range might be explained by release from biotic negative soil-feedbacks, which control potentially dominant species in their native range. To test this hypothesis, we grew individuals from sixteen phylogenetically paired European grassland species that became either invasive or naturalized in new ranges, in either sterilized soil or in sterilized soil with unsterilized soil inoculum from their native home range. We found that although the native members of invasive species generally performed better than those of naturalized species, these native members of invasive species also responded more negatively to native soil inoculum than did the native members of naturalized species. This supports our hypothesis that potentially invasive species in their native range are held in check by negative soil-feedbacks. However, contrary to expectation, negative soil-feedbacks in potentially invasive species were not much increased by interspecific competition. There was no significant variation among families between invasive and naturalized species regarding their feedback response (negative vs. neutral). Therefore, we conclude that the observed negative soil feedbacks in potentially invasive species may be quite widespread in European families of typical grassland species.}, language = {en} }