@article{ZhangHuangHuangetal.2018, author = {Zhang, Yang and Huang, Wentao and Huang, Baochun and van Hinsbergen, Douwe J. J. and Yang, Tao and Dupont-Nivet, Guillaume and Guo, Zhaojie}, title = {53-43Ma Deformation of Eastern Tibet Revealed by Three Stages of Tectonic Rotation in the Gongjue Basin}, series = {Journal of geophysical research : Solid earth}, volume = {123}, journal = {Journal of geophysical research : Solid earth}, number = {5}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1002/2018JB015443}, pages = {3320 -- 3338}, year = {2018}, abstract = {The Gongjue basin from the eastern Qiangtang terrane is located in the transition region where the regional structural lineation curves from east-west-oriented in Tibet to north-south-oriented in Yunnan. In this study, we sampled the red beds in the basin from the lower Gongjue to upper Ranmugou formations for the first time covering the entire stratigraphic profile. The stratigraphic ages are bracketed within 53-43Ma by new detrital zircon U-Pb ages constraining the maximum deposition age to 52.51.5Ma. Rock magnetic and petrographic studies indicate that detrital magnetite and hematite are the magnetic carriers. Positive reversals and fold tests demonstrate that the characteristic remanent magnetization has a primary origin. The Gongjue and Ranmugou formations yield mean characteristic remanent magnetization directions of D-s/I-s=31.0 degrees/21.3 degrees and D-s/I-s=15.9 degrees/22.0 degrees, respectively. The magnetic inclination of these characteristic remanent magnetizations is significantly shallowed compared to the expected inclination for the locality. However, the elongation/inclination correction method does not provide a meaningful correction, likely because of syn-depositional rotation. Rotations relative to the Eurasian apparent polar wander path occurred in three stages: Stage I, 33.33.4 degrees clockwise rotation during the deposition of the Gongjue and lower Ranmugou formations; Stage II, 26.93.7 degrees counterclockwise rotation during deposition of the lower and middle Ranmugou formation; and Stage III, 17.73.3 degrees clockwise rotation after 43Ma. The complex rotation history recorded in the basin is possibly linked to sinistral shear along the Qiangtang block during India indentation into Asia and the early stage of the extrusion of the northwestern Indochina blocks away from eastern Tibet.}, language = {en} } @article{BlayneyDupontNivetNajmanetal.2019, author = {Blayney, Tamsin and Dupont-Nivet, Guillaume and Najman, Yani and Proust, Jean-Noel and Meijer, Niels and Roperch, Pierrick and Sobel, Edward and Millar, Ian and Guo, Zhaojie}, title = {Tectonic Evolution of the Pamir Recorded in the Western Tarim Basin (China)}, series = {Tectonics}, volume = {38}, journal = {Tectonics}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1029/2018TC005146}, pages = {492 -- 515}, year = {2019}, abstract = {The northward indentation of the Pamir salient into the Tarim basin at the western syntaxis of the India-Asia collision zone is the focus of controversial models linking lithospheric to surface and atmospheric processes. Here we report on tectonic events recorded in the most complete and best-dated sedimentary sequences from the western Tarim basin flanking the eastern Pamir (the Aertashi section), based on sedimentologic, provenance, and magnetostratigraphic analyses. Increased tectonic subsidence and a shift from marine to continental fluvio-deltaic deposition at 41Ma indicate that far-field deformation from the south started to affect the Tarim region. A sediment accumulation hiatus from 24.3 to 21.6Ma followed by deposition of proximal conglomerates is linked to fault propagation into the Tarim basin. From 21.6 to 15.0Ma, increasing accumulation rates of fining upward clastics is interpreted as the expression of a major dextral transtensional system linking the Kunlun to the Tian Shan ahead of the northward Pamir indentation. At 15.0Ma, the appearance of North Pamir-sourced conglomerates followed at 11Ma by Central Pamir-sourced volcanics coincides with a shift to E-W compression, clockwise vertical-axis rotations and the onset of growth strata associated with the activation of the local east vergent Qimugen thrust wedge. Together, this enables us to interpret that Pamir indentation into Tarim had started by 24.3Ma, reached the study location by 15.0Ma and had passed it by 11Ma, providing kinematic constraints on proposed tectonic models involving intracontinental subduction and delamination.}, language = {en} } @article{HuangvanHinsbergenLippertetal.2015, author = {Huang, Wentao and van Hinsbergen, Douwe J. J. and Lippert, Peter C. and Guo, Zhaojie and Dupont-Nivet, Guillaume}, title = {Paleomagnetic tests of tectonic reconstructions of the India-Asia collision zone}, series = {Geophysical research letters}, volume = {42}, journal = {Geophysical research letters}, number = {8}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1002/2015GL063749}, pages = {2642 -- 2649}, year = {2015}, abstract = {Several solutions have been proposed to explain the long-standing kinematic observation that postcollisional upper crustal shortening within the Himalaya and Asia is much less than the magnitude of India-Asia convergence. Here we implement these hypotheses in global plate reconstructions and test paleolatitudes predicted by the global apparent polar wander path against independent, and the most robust paleomagnetic data. Our tests demonstrate that (1) reconstructed 600-750km postcollisional intra-Asian shortening is a minimum value; (2) a 52Ma collision age is only consistent with paleomagnetic data if intra-Asian shortening was 900km; a 56-58Ma collision age requires greater intra-Asian shortening; (3) collision ages of 34 or 65Ma incorrectly predict Late Cretaceous and Paleogene paleolatitudes of the Tibetan Himalaya (TH); and (4) Cretaceous counterclockwise rotation of India cannot explain the paleolatitudinal divergence between the TH and India. All hypotheses, regardless of collision age, require major Cretaceous extension within Greater India.}, language = {en} }