@article{BalazadehKwasniewskiCaldanaetal.2011, author = {Balazadeh, Salma and Kwasniewski, Miroslaw and Caldana, Camila and Mehrnia, Mohammad and Zanor, Maria Ines and Xue, Gang-Ping and M{\"u}ller-R{\"o}ber, Bernd}, title = {ORS1, an H2O2-Responsive NAC Transcription Factor, Controls Senescence in Arabidopsis thaliana}, series = {Molecular plant}, volume = {4}, journal = {Molecular plant}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1674-2052}, doi = {10.1093/mp/ssq080}, pages = {346 -- 360}, year = {2011}, abstract = {We report here that ORS1, a previously uncharacterized member of the NAC transcription factor family, controls leaf senescence in Arabidopsis thaliana. Overexpression of ORS1 accelerates senescence in transgenic plants, whereas its inhibition delays it. Genes acting downstream of ORS1 were identified by global expression analysis using transgenic plants producing dexamethasone-inducible ORS1-GR fusion protein. Of the 42 up-regulated genes, 30 (similar to 70\%) were previously shown to be up-regulated during age-dependent senescence. We also observed that 32 (similar to 76\%) of the ORS1-dependent genes were induced by long-term (4 d), but not short-term (6 h) salinity stress (150 mM NaCl). Furthermore, expression of 16 and 24 genes, respectively, was induced after 1 and 5 h of treatment with hydrogen peroxide (H2O2), a reactive oxygen species known to accumulate during salinity stress. ORS1 itself was found to be rapidly and strongly induced by H2O2 treatment in both leaves and roots. Using in vitro binding site selection, we determined the preferred binding motif of ORS1 and found it to be present in half of the ORS1-dependent genes. ORS1 is a paralog of ORE1/ANAC092/AtNAC2, a previously reported regulator of leaf senescence. Phylogenetic footprinting revealed evolutionary conservation of the ORS1 and ORE1 promoter sequences in different Brassicaceae species, indicating strong positive selection acting on both genes. We conclude that ORS1, similarly to ORE1, triggers expression of senescence-associated genes through a regulatory network that may involve cross-talk with salt- and H2O2-dependent signaling pathways.}, language = {en} } @article{WangKoehlerCaoetal.2012, author = {Wang, Wei-Hong and K{\"o}hler, Barbara and Cao, Feng-Qiu and Liu, Guo-Wei and Gong, Yuan-Yong and Sheng, Song and Song, Qi-Chao and Cheng, Xiao-Yuan and Garnett, Trevor and Okamoto, Mamoru and Qin, Rui and M{\"u}ller-R{\"o}ber, Bernd and Tester, Mark and Liu, Lai-Hua}, title = {Rice DUR3 mediates high-affinity urea transport and plays an effective role in improvement of urea acquisition and utilization when expressed in Arabidopsis}, series = {New phytologist : international journal of plant science}, volume = {193}, journal = {New phytologist : international journal of plant science}, number = {2}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0028-646X}, doi = {10.1111/j.1469-8137.2011.03929.x}, pages = {432 -- 444}, year = {2012}, abstract = {Despite the great agricultural and ecological importance of efficient use of urea-containing nitrogen fertilizers by crops, molecular and physiological identities of urea transport in higher plants have been investigated only in Arabidopsis. We performed short-time urea-influx assays which have identified a low-affinity and high-affinity (Km of 7.55 mu M) transport system for urea-uptake by rice roots (Oryza sativa). A high-affinity urea transporter OsDUR3 from rice was functionally characterized here for the first time among crops. OsDUR3 encodes an integral membrane-protein with 721 amino acid residues and 15 predicted transmembrane domains. Heterologous expression demonstrated that OsDUR3 restored yeast dur3-mutant growth on urea and facilitated urea import with a Km of c. 10 mu M in Xenopus oocytes. Quantitative reverse-transcription polymerase chain reaction (qPCR) analysis revealed upregulation of OsDUR3 in rice roots under nitrogen-deficiency and urea-resupply after nitrogen-starvation. Importantly, overexpression of OsDUR3 complemented the Arabidopsis atdur3-1 mutant, improving growth on low urea and increasing root urea-uptake markedly. Together with its plasma membrane localization detected by green fluorescent protein (GFP)-tagging and with findings that disruption of OsDUR3 by T-DNA reduces rice growth on urea and urea uptake, we suggest that OsDUR3 is an active urea transporter that plays a significant role in effective urea acquisition and utilisation in rice.}, language = {en} }