@article{WeyrichJeschekSchrapersetal.2018, author = {Weyrich, Alexandra and Jeschek, Marie and Schrapers, Katharina T. and Lenz, Dorina and Chung, Tzu Hung and Ruebensam, Kathrin and Yasar, Sermin and Schneemann, Markus and Ortmann, Sylvia and Jewgenow, Katarina and Fickel, J{\"o}rns}, title = {Diet changes alter paternally inherited epigenetic pattern in male Wild guinea pigs}, series = {Environmental Epigenetics}, volume = {4}, journal = {Environmental Epigenetics}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {2058-5888}, doi = {10.1093/eep/dvy011}, pages = {12}, year = {2018}, abstract = {Epigenetic modifications, of which DNA methylation is the most stable, are a mechanism conveying environmental information to subsequent generations via parental germ lines. The paternal contribution to adaptive processes in the offspring might be crucial, but has been widely neglected in comparison to the maternal one. To address the paternal impact on the offspring's adaptability to changes in diet composition, we investigated if low protein diet (LPD) in F0 males caused epigenetic alterations in their subsequently sired sons. We therefore fed F0 male Wild guinea pigs with a diet lowered in protein content (LPD) and investigated DNA methylation in sons sired before and after their father's LPD treatment in both, liver and testis tissues. Our results point to a 'heritable epigenetic response' of the sons to the fathers' dietary change. Because we detected methylation changes also in the testis tissue, they are likely to be transmitted to the F2 generation. Gene-network analyses of differentially methylated genes in liver identified main metabolic pathways indicating a metabolic reprogramming ('metabolic shift'). Epigenetic mechanisms, allowing an immediate and inherited adaptation may thus be important for the survival of species in the context of a persistently changing environment, such as climate change.}, language = {en} } @article{WeyrichLenzFickel2018, author = {Weyrich, Alexandra and Lenz, Dorina and Fickel, J{\"o}rns}, title = {Environmental Change-Dependent Inherited Epigenetic Response}, series = {GENES}, volume = {10}, journal = {GENES}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {2073-4425}, doi = {10.3390/genes10010004}, pages = {15}, year = {2018}, abstract = {Epigenetic modifications are a mechanism conveying environmental information to subsequent generations via parental germ lines. Research on epigenetic responses to environmental changes in wild mammals has been widely neglected, as well as studies that compare responses to changes in different environmental factors. Here, we focused on the transmission of DNA methylation changes to naive male offspring after paternal exposure to either diet (~40\% less protein) or temperature increase (10 °C increased temperature). Because both experiments focused on the liver as the main metabolic and thermoregulation organ, we were able to decipher if epigenetic changes differed in response to different environmental changes. Reduced representation bisulfite sequencing (RRBS) revealed differentially methylated regions (DMRs) in annotated genomic regions in sons sired before (control) and after the fathers' treatments. We detected both a highly specific epigenetic response dependent on the environmental factor that had changed that was reflected in genes involved in specific metabolic pathways, and a more general response to changes in outer stimuli reflected by epigenetic modifications in a small subset of genes shared between both responses. Our results indicated that fathers prepared their offspring for specific environmental changes by paternally inherited epigenetic modifications, suggesting a strong paternal contribution to adaptive processes.}, language = {en} } @article{RichterBruneRiedletal.2021, author = {Richter, Maximilian and Brune, Sascha and Riedl, Simon and Glerum, Anne and Neuharth, Derek and Strecker, Manfred}, title = {Controls on asymmetric rift dynamics}, series = {Tectonics / American Geophysical Union, AGU ; European Geophysical Society, EGS}, volume = {40}, journal = {Tectonics / American Geophysical Union, AGU ; European Geophysical Society, EGS}, number = {5}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1029/2020TC006553}, pages = {21}, year = {2021}, abstract = {Complex, time-dependent, and asymmetric rift geometries are observed throughout the East African Rift System (EARS) and are well documented, for instance, in the Kenya Rift. To unravel asymmetric rifting processes in this region, we conduct 2D geodynamic models. We use the finite element software ASPECT employing visco-plastic rheologies, mesh-refinement, distributed random noise seeding, and a free surface. In contrast to many previous numerical modeling studies that aimed at understanding final rifted margin symmetry, we explicitly focus on initial rifting stages to assess geodynamic controls on strain localization and fault evolution. We thereby link to geological and geophysical observations from the Southern and Central Kenya Rift. Our models suggest a three-stage early rift evolution that dynamically bridges previously inferred fault-configuration phases of the eastern EARS branch: (1) accommodation of initial strain localization by a single border fault and flexure of the hanging-wall crust, (2) faulting in the hanging-wall and increasing upper-crustal faulting in the rift-basin center, and (3) loss of pronounced early stage asymmetry prior to basinward localization of deformation. This evolution may provide a template for understanding early extensional faulting in other branches of the East African Rift and in asymmetric rifts worldwide. By modifying the initial random noise distribution that approximates small-scale tectonic inheritance, we show that a spectrum of first-order fault configurations with variable symmetry can be produced in models with an otherwise identical setup. This approach sheds new light on along-strike rift variability controls in active asymmetric rifts and proximal rifted margins.}, language = {en} }