@article{MartinezGarzonKwiatekBohnhoffetal.2017, author = {Mart{\´i}nez-Garz{\´o}n, Patricia and Kwiatek, Grzegorz and Bohnhoff, Marco and Dresen, Georg}, title = {Volumetric components in the earthquake source related to fluid injection and stress state}, series = {Geophysical research letters}, volume = {44}, journal = {Geophysical research letters}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1002/2016GL071963}, pages = {800 -- 809}, year = {2017}, abstract = {We investigate source processes of fluid-induced seismicity from The Geysers geothermal reservoir in California to determine their relation with hydraulic operations and improve the corresponding seismic hazard estimates. Analysis of 869 well-constrained full moment tensors (M-w 0.8-3.5) reveals significant non-double-couple components (>25\%) for about 65\% of the events. Volumetric deformation is governed by cumulative injection rates with larger non-double-couple components observed near the wells and during high injection periods. Source mechanisms are magnitude dependent and vary significantly between faulting regimes. Normal faulting events (M-w<2) reveal substantial volumetric components indicating dilatancy in contrast to strike-slip events that have a dominant double-couple source. Volumetric components indicating closure of cracks in the source region are mostly found for reverse faulting events with M-w>2.5. Our results imply that source processes and magnitudes of fluid-induced seismic events are strongly affected by the hydraulic operations, the reservoir stress state, and the faulting regime.}, language = {en} }