@article{WendtMorriss2022, author = {Wendt, Julia and Morriss, Jayne}, title = {An examination of intolerance of uncertainty and contingency instruction on multiple indices during threat acquisition and extinction training}, series = {International journal of psychophysiology : official journal of the International Organization of Psychophysiology}, volume = {177}, journal = {International journal of psychophysiology : official journal of the International Organization of Psychophysiology}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0167-8760}, doi = {10.1016/j.ijpsycho.2022.05.005}, pages = {171 -- 178}, year = {2022}, abstract = {Individuals who score high in self-reported Intolerance of Uncertainty (IU) tend to find uncertainty aversive. Prior research has demonstrated that under uncertainty individuals with high IU display difficulties in updating learned threat associations to safety associations. Importantly, recent research has shown that providing contingency instructions about threat and safety contingencies (i.e. reducing uncertainty) to individuals with high IU promotes the updating of learned threat associations to safety associations. Here we aimed to conceptually replicate IU and contingency instruction-based effects by conducting a secondary analysis of self-reported IU, ratings, skin conductance, and functional magnetic resonance imaging (fMRI) data recorded during uninstructed/instructed blocks of threat acquisition and threat extinction training (n = 48). Generally, no significant associations were observed between self-reported IU and differential responding to learned threat and safety cues for any measure during uninstructed/instructed blocks of threat acquisition and threat extinction training. There was some tentative evidence that higher IU was associated with greater ratings of unpleasantness and arousal to the safety cue after the experiment and greater skin conductance response to the safety cue during extinction generally. Potential explanations for these null effects and directions for future research are discussed.}, language = {en} } @article{HolzBoeckerSchlierBuchmannetal.2017, author = {Holz, Nathalie E. and Boecker-Schlier, Regina and Buchmann, Arlette F. and Blomeyer, Dorothea and Jennen-Steinmetz, Christine and Baumeister, Sarah and Plichta, Michael M. and Cattrell, Anna and Schumann, Gunter and Esser, G{\"u}nter and Schmidt, Martin and Buitelaar, Jan and Meyer-Lindenberg, Andreas and Banaschewski, Tobias and Brandeis, Daniel and Laucht, Manfred}, title = {Ventral striatum and amygdala activity as convergence sites for early adversity and conduct disorder}, series = {Frontiers in human neuroscience}, volume = {12}, journal = {Frontiers in human neuroscience}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1749-5016}, doi = {10.1093/scan/nsw120}, pages = {261 -- 272}, year = {2017}, abstract = {Childhood family adversity (CFA) increases the risk for conduct disorder (CD) and has been associated with alterations in regions of affective processing like ventral striatum (VS) and amygdala. However, no study so far has demonstrated neural converging effects of CFA and CD in the same sample. At age 25 years, functional MRI data during two affective tasks, i.e. a reward (N = 171) and a face-matching paradigm (N = 181) and anatomical scans (N = 181) were acquired in right-handed currently healthy participants of an epidemiological study followed since birth. CFA during childhood was determined using a standardized parent interview. Disruptive behaviors and CD diagnoses during childhood and adolescence were obtained by diagnostic interview (2-19 years), temperamental reward dependence was assessed by questionnaire (15 and 19 years). CFA predicted increased CD and amygdala volume. Both exposure to CFA and CD were associated with a decreased VS response during reward anticipation and blunted amygdala activity during face-matching. CD mediated the effect of CFA on brain activity. Temperamental reward dependence was negatively correlated with CFA and CD and positively with VS activity. These findings underline the detrimental effects of CFA on the offspring's affective processing and support the importance of early postnatal intervention programs aiming to reduce childhood adversity factors.}, language = {en} } @article{SegeBradleyWeymaretal.2017, author = {Sege, Christopher T. and Bradley, Margaret M. and Weymar, Mathias and Lang, Peter J.}, title = {A direct comparison of appetitive and aversive anticipation}, series = {Behavioural brain research : an international journal}, volume = {326}, journal = {Behavioural brain research : an international journal}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0166-4328}, doi = {10.1016/j.bbr.2017.03.005}, pages = {96 -- 102}, year = {2017}, abstract = {fMRI studies of reward find increased neural activity in ventral striatum and medial prefrontal cortex (mPFC), whereas other regions, including the dorsolateral prefrontal cortex (d1PFC), anterior cingulate cortex (ACC), and anterior insula, are activated when anticipating aversive exposure. Although these data suggest differential activation during anticipation of pleasant or of unpleasant exposure, they also arise in the context of different paradigms (e.g., preparation for reward vs. threat of shock) and participants. To determine overlapping and unique regions active during emotional anticipation, we compared neural activity during anticipation of pleasant or unpleasant exposure in the same participants. Cues signalled the upcoming presentation of erotic/romantic, violent, or everyday pictures while BOLD activity during the 9-s anticipatory period was measured using fMRI. Ventral striatum and a ventral mPFC subregion were activated when anticipating pleasant, but not unpleasant or neutral, pictures, whereas activation in other regions was enhanced when anticipating appetitive or aversive scenes.}, language = {en} } @article{HolzZohselLauchtetal.2016, author = {Holz, Nathalie E. and Zohsel, Katrin and Laucht, Manfred and Banaschewski, Tobias and Hohmann, Sarah and Brandeis, Daniel}, title = {Gene x environment interactions in conduct disorder}, series = {Neuroscience \& biobehavioral reviews : official journal of the International Behavioral Neuroscience Society}, volume = {91}, journal = {Neuroscience \& biobehavioral reviews : official journal of the International Behavioral Neuroscience Society}, publisher = {Elsevier}, address = {Oxford}, issn = {0149-7634}, doi = {10.1016/j.neubiorev.2016.08.017}, pages = {239 -- 258}, year = {2016}, abstract = {Conduct disorder (CD) causes high financial and social costs, not only in affected families but across society, with only moderately effective treatments so far. There is consensus that CD is likely caused by the convergence of many different factors, including genetic and adverse environmental factors. There is ample evidence of gene-environment interactions in the etiology of CD on a behavioral level regarding genetically sensitive designs and candidate gene-driven approaches, most prominently and consistently represented by MAOA. However, conclusive indications of causal GxE patterns are largely lacking. Inconsistent findings, lack of replication and methodological limitations remain a major challenge. Likewise, research addressing the identification of affected brain pathways which reflect plausible biological mechanisms underlying GxE is still very sparse. Future research will have to take multilevel approaches into account, which combine genetic, environmental, epigenetic, personality, neural and hormone perspectives. A better understanding of relevant GxE patterns in the etiology of CD might enable researchers to design customized treatment options (e.g. biofeedback interventions) for specific subgroups of patients.}, language = {en} } @article{WeymarBradleySegeetal.2018, author = {Weymar, Mathias and Bradley, Margaret M. and Sege, Christopher T. and Lang, Peter J.}, title = {Neural activation and memory for natural scenes}, series = {Psychophysiology : journal of the Society for Psychophysiological Research}, volume = {55}, journal = {Psychophysiology : journal of the Society for Psychophysiological Research}, number = {10}, publisher = {Wiley}, address = {Hoboken}, issn = {0048-5772}, doi = {10.1111/psyp.13197}, pages = {12}, year = {2018}, abstract = {Stimulus repetition elicits either enhancement or suppression in neural activity, and a recent fMRI meta-analysis of repetition effects for visual stimuli (Kim, 2017) reported cross-stimulus repetition enhancement in medial and lateral parietal cortex, as well as regions of prefrontal, temporal, and posterior cingulate cortex. Repetition enhancement was assessed here for repeated and novel scenes presented in the context of either an explicit episodic recognition task or an implicit judgment task, in order to study the role of spontaneous retrieval of episodic memories. Regardless of whether episodic memory was explicitly probed or not, repetition enhancement was found in medial posterior parietal (precuneus/cuneus), lateral parietal cortex (angular gyrus), as well as in medial prefrontal cortex (frontopolar), which did not differ by task. Enhancement effects in the posterior cingulate cortex were significantly larger during explicit compared to implicit task, primarily due to a lack of functional activity for new scenes. Taken together, the data are consistent with an interpretation that medial and (ventral) lateral parietal cortex are associated with spontaneous episodic retrieval, whereas posterior cingulate cortical regions may reflect task or decision processes.}, language = {en} } @article{HolzBoeckerSchlierJennenSteinmetzetal.2018, author = {Holz, Nathalie E. and Boecker-Schlier, Regina and Jennen-Steinmetz, Christine and Hohm, Erika and Buchmann, Arlette F. and Blomeyer, Dorothea and Baumeister, Sarah and Plichta, Michael M. and Esser, G{\"u}nter and Schmidt, Martin and Meyer-Lindenberg, Andreas and Banaschewski, Tobias and Brandeis, Daniel and Laucht, Manfred}, title = {Early maternal care may counteract familial liability for psychopathology in the reward circuitry}, series = {Social Cognitive and Affective Neuroscience}, volume = {13}, journal = {Social Cognitive and Affective Neuroscience}, number = {11}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1749-5016}, doi = {10.1093/scan/nsy087}, pages = {1191 -- 1201}, year = {2018}, abstract = {Reward processing is altered in various psychopathologies and has been shown to be susceptible to genetic and environmental influences. Here, we examined whether maternal care may buffer familial risk for psychiatric disorders in terms of reward processing. Functional magnetic resonance imaging during a monetary incentive delay task was acquired in participants of an epidemiological cohort study followed since birth (N = 172, 25 years). Early maternal stimulation was assessed during a standardized nursing/playing setting at the age of 3 months. Parental psychiatric disorders (familial risk) during childhood and the participants' previous psychopathology were assessed by diagnostic interview. With high familial risk, higher maternal stimulation was related to increasing activation in the caudate head, the supplementary motor area, the cingulum and the middle frontal gyrus during reward anticipation, with the opposite pattern found in individuals with no familial risk. In contrast, higher maternal stimulation was associated with decreasing caudate head activity during reward delivery and reduced levels of attention deficit hyperactivity disorder (ADHD) in the high-risk group. Decreased caudate head activity during reward anticipation and increased activity during delivery were linked to ADHD. These findings provide evidence of a long-term association of early maternal stimulation on both adult neurobiological systems of reward underlying externalizing behavior and ADHD during development.}, language = {en} } @article{JeglinskiMendeSchmidt2021, author = {Jeglinski-Mende, Melinda A. and Schmidt, Hendrikje}, title = {Psychotherapy in the Framework of Embodied Cognition}, series = {Frontiers in Psychiatry}, volume = {12}, journal = {Frontiers in Psychiatry}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-0640}, doi = {10.3389/fpsyt.2021.562490}, pages = {9}, year = {2021}, abstract = {Mental health problems remain among the main generators of costs within and beyond the health care system. Psychotherapy, the tool of choice in their treatment, is qualified by social interaction, and cooperation within the therapist-patient-dyad. Research into the factors influencing therapy success to date is neither exhaustive nor conclusive. Among many others, the quality of the relationship between therapist and patient stands out regardless of the followed psychotherapy school. Emerging research points to a connection between interpersonal synchronization within the sessions and therapy outcome. Consequently, it can be considered significant for the shaping of this relationship. The framework of Embodied Cognition assumes bodily and neuronal correlates of thinking. Therefore, the present paper reviews investigations on interpersonal, non-verbal synchrony in two domains: firstly, studies on interpersonal synchrony in psychotherapy are reviewed (synchronization of movement). Secondly, findings on neurological correlates of interpersonal synchrony (assessed with EEG, fMRI, fNIRS) are summarized in a narrative manner. In addition, the question is asked whether interpersonal synchrony can be achieved voluntarily on an individual level. It is concluded that there might be mechanisms which could give more insights into therapy success, but as of yet remain uninvestigated. Further, the framework of embodied cognition applies more to the current body of evidence than classical cognitivist views. Nevertheless, deeper research into interpersonal physical and neurological processes utilizing the framework of Embodied Cognition emerges as a possible route of investigation on the road to lower drop-out rates, improved and quality-controlled therapeutic interventions, thereby significantly reducing healthcare costs.}, language = {en} } @article{WendtLoewWeymaretal.2017, author = {Wendt, Julia and Loew, Andreas and Weymar, Mathias and Lotze, Martin and Hamm, Alfons O.}, title = {Active avoidance and attentive freezing in the face of approaching threat}, series = {NeuroImage : a journal of brain function}, volume = {158}, journal = {NeuroImage : a journal of brain function}, publisher = {Elsevier}, address = {San Diego}, issn = {1053-8119}, doi = {10.1016/j.neuroimage.2017.06.054}, pages = {196 -- 204}, year = {2017}, abstract = {Defensive behaviors in animals and humans vary dynamically with increasing proximity of a threat and depending upon the behavioral repertoire at hand. The current study investigated physiological and behavioral adjustments and associated brain activation when participants were exposed to dynamically approaching threat that was either inevitable or could be avoided by motor action. When the approaching threat was inevitable, attentive freezing was observed as indicated by fear bradycardia, startle potentiation, and a dynamic increase in activation of the anterior insula and the periaqueductal grey. In preparation for active avoidance a switch in defensive behavior was observed characterized by startle inhibition and heart rate acceleration along with potentiated activation of the amygdala and the periaqueductal grey. Importantly, the modulation of defensive behavior according to threat imminence and the behavioral option at hand was associated with activity changes in the ventromedial prefrontal cortex. These findings improve our understanding of brain mechanisms guiding human behavior during approaching threat depending on available resources.}, language = {en} } @article{HolzBoeckerSchlierBuchmannetal.2016, author = {Holz, Nathalie and Boecker-Schlier, Regina and Buchmann, Arlette F. and Blomeyer, Dorothea and Baumeister, Sarah and Hohmann, Sarah and Jennen-Steinmetz, Christine and Wolf, Isabella and Rietschel, Marcella and Witt, Stephanie H. and Plichta, Michael M. and Meyer-Lindenberg, Andreas and Schmidt, Martin H. and Esser, G{\"u}nter and Banaschewski, Tobias and Brandeis, Daniel and Laucht, Manfred}, title = {Evidence for a Sex-Dependent MAOAx Childhood Stress Interaction in the Neural Circuitry of Aggression}, series = {Cerebral cortex}, volume = {26}, journal = {Cerebral cortex}, publisher = {Oxford Univ. Press}, address = {Cary}, issn = {1047-3211}, doi = {10.1093/cercor/bhu249}, pages = {904 -- 914}, year = {2016}, abstract = {Converging evidence emphasizes the role of an interaction between monoamine oxidase A (MAOA) genotype, environmental adversity, and sex in the pathophysiology of aggression. The present study aimed to clarify the impact of this interaction on neural activity in aggression-related brain systems. Functional magnetic resonance imaging was performed in 125 healthy adults from a high-risk community sample followed since birth. DNA was genotyped for the MAOA-VNTR (variable number of tandem repeats). Exposure to childhood life stress (CLS) between the ages of 4 and 11 years was assessed using a standardized parent interview, aggression by the Youth/Young Adult Self-Report between the ages of 15 and 25 years, and the VIRA-R (Vragenlijst Instrumentele En Reactieve Agressie) at the age of 15 years. Significant interactions were obtained between MAOA genotype, CLS, and sex relating to amygdala, hippocampus, and anterior cingulate cortex (ACC) response, respectively. Activity in the amygdala and hippocampus during emotional face-matching increased with the level of CLS in male MAOA-L, while decreasing in male MAOA-H, with the reverse pattern present in females. Findings in the opposite direction in the ACC during a flanker NoGo task suggested that increased emotional activity coincided with decreased inhibitory control. Moreover, increasing amygdala activity was associated with higher Y(A)SR aggression in male MAOA-L and female MAOA-H carriers. Likewise, a significant association between amygdala activity and reactive aggression was detected in female MAOA-H carriers. The results point to a moderating role of sex in the MAOAx CLS interaction for intermediate phenotypes of emotional and inhibitory processing, suggesting a possible mechanism in conferring susceptibility to violence-related disorders.}, language = {en} } @article{HeinzelLorenzPelzetal.2016, author = {Heinzel, Stephan and Lorenz, Robert C. and Pelz, Patricia and Heinz, Andreas and Walter, Henrik and Kathmann, Norbert and Rapp, Michael Armin and Stelzel, Christine}, title = {Neural correlates of training and transfer effects in working memory in older adults}, series = {NeuroImage : a journal of brain function}, volume = {134}, journal = {NeuroImage : a journal of brain function}, publisher = {Elsevier}, address = {San Diego}, issn = {1053-8119}, doi = {10.1016/j.neuroimage.2016.03.068}, pages = {236 -- 249}, year = {2016}, abstract = {As indicated by previous research, aging is associated with a decline in working memory (WM) functioning, related to alterations in fronto-parietal neural activations. At the same time, previous studies showed that WM training in older adults may improve the performance in the trained task (training effect), and more importantly, also in untrained WM tasks (transfer effects). However, neural correlates of these transfer effects that would improve understanding of its underlying mechanisms, have not been shown in older participants as yet. In this study, we investigated blood-oxygen-level-dependent (BOLD) signal changes during n-back performance and an untrained delayed recognition (Sternberg) task following 12 sessions (45 min each) of adaptive n-back training in older adults. The Sternberg task used in this study allowed to test for neural training effects independent of specific task affordances of the trained task and to separate maintenance from updating processes. Thirty-two healthy older participants (60-75 years) were assigned either to an n-back training or a no-contact control group. Before (t1) and after (t2) training/waiting period, both the n-back task and the Sternberg task were conducted while BOLD signal was measured using functional Magnetic Resonance Imaging (fMRI) in all participants. In addition, neuropsychological tests were performed outside the scanner. WM performance improved with training and behavioral transfer to tests measuring executive functions, processing speed, and fluid intelligence was found. In the training group, BOLD signal in the right lateral middle frontal gyrus/caudal superior frontal sulcus (Brodmann area, BA 6/8) decreased in both the trained n-back and the updating condition of the untrained Sternberg task at t2, compared to the control group. fMRI findings indicate a training-related increase in processing efficiency of WM networks, potentially related to the process of WM updating. Performance gains in untrained tasks suggest that transfer to other cognitive tasks remains possible in aging. (C) 2016 Elsevier Inc. All rights reserved.}, language = {en} }