@article{HoffmannMachatschekLendlein2022, author = {Hoffmann, Falk and Machatschek, Rainhard Gabriel and Lendlein, Andreas}, title = {Analytical model and Monte Carlo simulations of polymer degradation with improved chain cut statistics}, series = {Journal of materials research : JMR}, volume = {37}, journal = {Journal of materials research : JMR}, number = {5}, publisher = {Springer}, address = {Heidelberg}, issn = {0884-2914}, doi = {10.1557/s43578-022-00495-4}, pages = {1093 -- 1101}, year = {2022}, abstract = {The degradation of polymers is described by mathematical models based on bond cleavage statistics including the decreasing probability of chain cuts with decreasing average chain length. We derive equations for the degradation of chains under a random chain cut and a chain end cut mechanism, which are compared to existing models. The results are used to predict the influence of internal molecular parameters. It is shown that both chain cut mechanisms lead to a similar shape of the mass or molecular mass loss curve. A characteristic time is derived, which can be used to extract the maximum length of soluble fragments l of the polymer. We show that the complete description is needed to extract the degradation rate constant k from the molecular mass loss curve and that l can be used to design polymers that lose less mechanical stability before entering the mass loss phase.}, language = {en} } @article{LohmannGuoTietjen2018, author = {Lohmann, Dirk and Guo, Tong and Tietjen, Britta}, title = {Zooming in on coarse plant functional types-simulated response of savanna vegetation composition in response to aridity and grazing}, series = {Theoretical ecology}, volume = {11}, journal = {Theoretical ecology}, number = {2}, publisher = {Springer}, address = {Heidelberg}, issn = {1874-1738}, doi = {10.1007/s12080-017-0356-x}, pages = {161 -- 173}, year = {2018}, abstract = {Precipitation and land use in terms of livestock grazing have been identified as two of the most important drivers structuring the vegetation composition of semi-arid and arid savannas. Savanna research on the impact of these drivers has widely applied the so-called plant functional type (PFT) approach, grouping the vegetation into two or three broad types (here called meta-PFTs): woody plants and grasses, which are sometimes divided into perennial and annual grasses. However, little is known about the response of functional traits within these coarse types towards water availability or livestock grazing. In this study, we extended an existing eco-hydrological savanna vegetation model to capture trait diversity within the three broad meta-PFTs to assess the effects of both grazing and mean annual precipitation (MAP) on trait composition along a gradient of both drivers. Our results show a complex pattern of trait responses to grazing and aridity. The response differs for the three meta-PFTs. From our findings, we derive that trait responses to grazing and aridity for perennial grasses are similar, as suggested by the convergence model for grazing and aridity. However, we also see that this only holds for simulations below a MAP of 500 mm. This combined with the finding that trait response differs between the three meta-PFTs leads to the conclusion that there is no single, universal trait or set of traits determining the response to grazing and aridity. We finally discuss how simulation models including trait variability within meta-PFTs are necessary to understand ecosystem responses to environmental drivers, both locally and globally and how this perspective will help to extend conceptual frameworks of other ecosystems to savanna research.}, language = {en} } @article{GrumBenderAlfaetal.2018, author = {Grum, Marcus and Bender, Benedict and Alfa, A. S. and Gronau, Norbert}, title = {A decision maxim for efficient task realization within analytical network infrastructures}, series = {Decision support systems : DSS ; the international journal}, volume = {112}, journal = {Decision support systems : DSS ; the international journal}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-9236}, doi = {10.1016/j.dss.2018.06.005}, pages = {48 -- 59}, year = {2018}, abstract = {Faced with the increasing needs of companies, optimal dimensioning of IT hardware is becoming challenging for decision makers. In terms of analytical infrastructures, a highly evolutionary environment causes volatile, time dependent workloads in its components, and intelligent, flexible task distribution between local systems and cloud services is attractive. With the aim of developing a flexible and efficient design for analytical infrastructures, this paper proposes a flexible architecture model, which allocates tasks following a machine-specific decision heuristic. A simulation benchmarks this system with existing strategies and identifies the new decision maxim as superior in a first scenario-based simulation.}, language = {en} } @article{Gronau2019, author = {Gronau, Norbert}, title = {Determining the appropriate degree of autonomy in cyber-physical production systems}, series = {CIRP Journal of Manufacturing Science and Technology}, volume = {26}, journal = {CIRP Journal of Manufacturing Science and Technology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1755-5817}, doi = {10.1016/j.cirpj.2019.05.001}, pages = {70 -- 80}, year = {2019}, abstract = {Existing factories face multiple problems due to their hierarchical structure of decision making and control. Cyber-physical systems principally allow to increase the degree of autonomy to new heights. But which degree of autonomy is really useful and beneficiary? This paper differentiates diverse definitions of autonomy and approaches to determine them. Some experimental findings in a lab environment help to answer the question raised in this paper.}, language = {en} } @article{KuehnAltmannsbergerHens2016, author = {K{\"u}hn, Michael and Altmannsberger, Charlotte and Hens, Carmen}, title = {Waiweras WarmwasserreservoirWelche Aussagekraft haben Modelle?}, series = {Grundwasser : Zeitschrift der Fachsektion Hydrogeologie in der Deutschen Gesellschaft f{\~A}¼r Geowissenschaften (FH-DGG)}, volume = {21}, journal = {Grundwasser : Zeitschrift der Fachsektion Hydrogeologie in der Deutschen Gesellschaft f{\~A}¼r Geowissenschaften (FH-DGG)}, publisher = {Springer}, address = {Heidelberg}, issn = {1430-483X}, doi = {10.1007/s00767-016-0323-2}, pages = {107 -- 117}, year = {2016}, abstract = {The warm water geothermal reservoir below the village of Waiwera in New Zealand has been known by the native Maori for centuries. Development by the European immigrants began in 1863. Until the year 1969, the warm water flowing from all drilled wells was artesian. Due to overproduction, water up to 50 A degrees C now needs to be pumped to surface. Further, between 1975 and 1976, all warm water seeps on the beach of Waiwera ran dry. Within the context of sustainable water management, hydrogeological models must be developed as part of a management plan. Approaches of varying complexity have been set-up and applied since the 1980s. However, none of the models directly provide all results required for optimal water management. Answers are given simply to parts of the questions, nonetheless improving resource management of the geothermal reservoir.}, language = {de} }