@article{BarbotWeiss2021, author = {Barbot, Sylvain and Weiss, Jonathan R.}, title = {Connecting subduction, extension and shear localization across the Aegean Sea and Anatolia}, series = {Geophysical journal international}, volume = {226}, journal = {Geophysical journal international}, number = {1}, publisher = {Blackwell}, address = {Oxford [u.a.]}, issn = {0956-540X}, doi = {10.1093/gji/ggab078}, pages = {422 -- 445}, year = {2021}, abstract = {The Eastern Mediterranean is the most seismically active region in Europe due to the complex interactions of the Arabian, African, and Eurasian tectonic plates. Deformation is achieved by faulting in the brittle crust, distributed flow in the viscoelastic lower-crust and mantle, and Hellenic subduction, but the long-term partitioning of these mechanisms is still unknown. We exploit an extensive suite of geodetic observations to build a kinematic model connecting strike-slip deformation, extension, subduction, and shear localization across Anatolia and the Aegean Sea by mapping the distribution of slip and strain accumulation on major active geological structures. We find that tectonic escape is facilitated by a plate-boundary-like, translithospheric shear zone extending from the Gulf of Evia to the Turkish-Iranian Plateau that underlies the surface trace of the North Anatolian Fault. Additional deformation in Anatolia is taken up by a series of smaller-scale conjugate shear zones that reach the upper mantle, the largest of which is located beneath the East Anatolian Fault. Rapid north-south extension in the western part of the system, driven primarily by Hellenic Trench retreat, is accommodated by rotation and broadening of the North Anatolian mantle shear zone from the Sea of Marmara across the north Aegean Sea, and by a system of distributed transform faults and rifts including the rapidly extending Gulf of Corinth in central Greece and the active grabens of western Turkey. Africa-Eurasia convergence along the Hellenic Arc occurs at a median rate of 49.8mm yr(-1) in a largely trench-normal direction except near eastern Crete where variably oriented slip on the megathrust coincides with mixed-mode and strike-slip deformation in the overlying accretionary wedge near the Ptolemy-Pliny-Strabo trenches. Our kinematic model illustrates the competing roles the North Anatolian mantle shear zone, Hellenic Trench, overlying mantle wedge, and active crustal faults play in accommodating tectonic indentation, slab rollback and associated Aegean extension. Viscoelastic flow in the lower crust and upper mantle dominate the surface velocity field across much of Anatolia and a clear transition to megathrust-related slab pull occurs in western Turkey, the Aegean Sea and Greece. Crustal scale faults and the Hellenic wedge contribute only a minor amount to the large-scale, regional pattern of Eastern Mediterranean interseismic surface deformation.}, language = {en} } @article{MelnickYildirimHillemannetal.2017, author = {Melnick, Daniel and Yildirim, Cengiz and Hillemann, Christian and Garcin, Yannick and Ciner, T. Attila and Perez-Gussinye, Marta and Strecker, Manfred}, title = {Slip along the Sultanhani Fault in Central Anatolia from deformed Pleistocene shorelines of palaeo-lake Konya and implications for seismic hazards in low-strain regions}, series = {Geophysical journal international}, volume = {209}, journal = {Geophysical journal international}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggx074}, pages = {1431 -- 1454}, year = {2017}, abstract = {Central Anatolia is a low-relief, high-elevation region where decadal-scale deformation rates estimated from space geodesy suggest low strain rates within a stiff microplate. However, numerous Quaternary faults have been mapped within this low-strain region and estimating their slip rate and seismic potential is important for hazard assessments in an area of increasing infrastructural development. Here we focus on the Sultanhani Fault (SF), which constitutes an integral part of the Eskisehir-Cihanbeyli Fault System, and use deformed maximum highstand shorelines of palaeo-lake Konya to estimate tectonic slip rates at millennial scale. Some of these shorelines were previously interpreted as fault scarps, but we provide conclusive evidence for their erosional origin. We found that shoreline-angle elevations estimated from differential GPS profiles record vertical displacements of 10.2 m across the SF. New radiocarbon ages of lacustrine molluscs suggest 22.4 m of relative lake-level fall between 22.1 +/- 0.3 and 21.7 +/- 0.4 cal. kaBP, constraining the timing of abrupt abandonment of the highstand shoreline. Models of lithospheric rebound associated with regressions of the Tuz Golu and Konya palaeolakes predict only similar to 1 m of regional-scale uplift across the Konya Basin. Dislocation models of displaced shorelines suggest fault-slip rates of 1.5 and 1.8 mm yr(-1) for planar and listric fault geometries, respectively, providing reasonable results for the latter. We found fault scarps in the Nasuhpinar mudflat that likely represent the most recent ground-breaking rupture of the SF, with an average vertical displacement of 1.2 +/- 0.5 m estimated from 54 topographic profiles, equivalent to a M similar to 6.5-6.9 earthquake based on empirical scaling laws. If such events were characteristic during the ultimate 21 ka, a relatively short recurrence time of similar to 800-900 yr would be needed to account for the millennial slip rate. Alternatively, the fault scarp at Nasuhpinar might represent a larger earthquake requiring more frequent smaller events to account for the millennial rate. The relatively fast slip rate of the SF over the past 21 ka is unlikely to have persisted over longer timescales and might reflect spatiotemporal variations in deformation rates within kinematically-linked fault systems within Central Anatolia, or a transient perturbation to the local stress field or fault strength. Such perturbation might have been related to climatically controlled changes in surface and near-surface loads and by interactions among the different tectonic processes that have been proposed to drive the overall slow uplift and associated extension in the Central Anatolian Plateau.}, language = {en} } @article{WangHainzlZoeller2014, author = {Wang, Lifeng and Hainzl, Sebastian and Z{\"o}ller, Gert}, title = {Assessment of stress coupling among the inter-, co- and post-seismic phases related to the 2004 M6 Parkfield earthquake}, series = {Geophysical journal international}, volume = {197}, journal = {Geophysical journal international}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggu102}, pages = {1858 -- 1868}, year = {2014}, abstract = {Due to large uncertainties and non-uniqueness in fault slip inversion, the investigation of stress coupling based on the direct comparison of independent slip inversions, for example, between the coseismic slip distribution and the interseismic slip deficit, may lead to ambiguous conclusions. In this study, we therefore adopt the stress-constrained joint inversion in the Bayesian approach of Wang et al., and implement the physical hypothesis of stress coupling as a prior. We test the hypothesis that interseismic locking is coupled with the coseismic rupture, and the early post-seismic deformation is a stress relaxation process in response to the coseismic stress perturbation. We characterize the role of stress coupling in the seismic cycle by evaluating the efficiency of the model to explain the available data. Taking the 2004 M6 Parkfield earthquake as a study case, we find that the stress coupling hypothesis is in agreement with the data. The coseismic rupture zone is found to be strongly locked during the interseismic phase and the post-seismic slip zone is indicated to be weakly creeping. The post-seismic deformation plays an important role to rebuild stress in the coseismic rupture zone. Based on our results for the stress accumulation during both inter- and post-seismic phase in the coseismic rupture zone, together with the coseismic stress drop, we estimate a recurrence time of M6 earthquake in Parkfield around 23-41 yr, suggesting that the duration of 38 yr between the two recent M6 events in Parkfield is not a surprise.}, language = {en} }