@article{SmithFoxSchwanghartetal.2022, author = {Smith, Adam G. G. and Fox, Matthew and Schwanghart, Wolfgang and Carter, Andrew}, title = {Comparing methods for calculating channel steepness index}, series = {Earth science reviews : the international geological journal bridging the gap between research articles and textbooks}, volume = {227}, journal = {Earth science reviews : the international geological journal bridging the gap between research articles and textbooks}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-8252}, doi = {10.1016/j.earscirev.2022.103970}, pages = {20}, year = {2022}, abstract = {Channel steepness index, k(s), is a metric derived from the stream power model that, under certain conditions, scales with relative rock uplift rate. Channel steepness index is a property of rivers, which can be relatively easily extracted from digital elevation models (DEMs). As DEM data sets are widely available for Earth and are becoming more readily available for other planetary bodies, channel steepness index represents a powerful tool for interpreting tectonic processes. However, multiple approaches to calculate channel steepness index exist. From this several important questions arise; does choice of approach change the values of channel steepness index, can values be so different that choice of approach can influence the findings of a study, and are certain approaches better than others? With the aid of a synthetic river profile and a case study from the Sierra Nevada, California, we show that values of channel steepness index vary over orders of magnitude according to the methodology used in the calculation. We explore the limitations, advantages and disadvantages of the key approaches to calculating channel steepness index, and find that choosing an appropriate approach relies on the context of a study. Given these observations, it is important that authors acknowledge the methodology used to calculate channel steepness index, to ensure that results can be contextualised and reproduced.}, language = {en} } @article{PanekKorupLenartetal.2018, author = {Panek, Tomas and Korup, Oliver and Lenart, Jan and Hradecky, Jan and Brezny, Michal}, title = {Giant landslides in the foreland of the Patagonian Ice Sheet}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {194}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2018.06.028}, pages = {39 -- 54}, year = {2018}, abstract = {Quaternary glaciations have repeatedly shaped large tracts of the Andean foreland. Its spectacular large glacial lakes, staircases of moraine ridges, and extensive outwash plains have inspired generations of scientists to reconstruct the processes, magnitude, and timing of ice build-up and decay at the mountain front. Surprisingly few of these studies noticed many dozens of giant (≥108 m3) mass-wasting deposits in the foreland. We report some of the world's largest terrestrial landslides in the eastern piedmont of the Patagonian Ice Sheet (PIS) along the traces of the former Lago Buenos Aires and Lago Puyerred{\´o}n glacier lobes and lakes. More than 283 large rotational slides and lateral spreads followed by debris slides, earthflows, rotational and translational rockslides, complex slides and few large rock avalanches detached some 164 ± 56 km3 of material from the slopes of volcanic mesetas, lake-bounding moraines, and river-gorge walls. Many of these landslide deposits intersect with well-dated moraine ridges or former glacial-lake shorelines, and offer opportunities for relative dating of slope failure. We estimate that >60\% of the landslide volume (∼96 km3) detached after the Last Glacial Maximum (LGM). Giant slope failures cross-cutting shorelines of a large Late Glacial to Early Holocene lake ("glacial lake PIS") likely occurred during successive lake-level drop between ∼11.5 and 8 ka, and some of them are the largest hitherto documented landslides in moraines. We conclude that 1) large portions of terminal moraines can fail catastrophically several thousand years after emplacement; 2) slopes formed by weak bedrock or unconsolidated glacial deposits bordering glacial lakes can release extremely large landslides; and 3) landslides still occur in the piedmont, particularly along postglacial gorges cut in response to falling lake levels.}, language = {en} } @article{VehKorupvonSpechtetal.2019, author = {Veh, Georg and Korup, Oliver and von Specht, Sebastian and R{\"o}ßner, Sigrid and Walz, Ariane}, title = {Unchanged frequency of moraine-dammed glacial lake outburst floods in the Himalaya}, series = {Nature climate change}, volume = {9}, journal = {Nature climate change}, number = {5}, publisher = {Nature Publ. Group}, address = {London}, issn = {1758-678X}, doi = {10.1038/s41558-019-0437-5}, pages = {379 -- 383}, year = {2019}, abstract = {Shrinking glaciers in the Hindu Kush-Karakoram-Himalaya-Nyainqentanglha (HKKHN) region have formed several thousand moraine-dammed glacial lakes(1-3), some of these having grown rapidly in past decades(3,4). This growth may promote more frequent and potentially destructive glacial lake outburst floods (GLOFs)(5-7). Testing this hypothesis, however, is confounded by incomplete databases of the few reliable, though selective, case studies. Here we present a consistent Himalayan GLOF inventory derived automatically from all available Landsat imagery since the late 1980s. We more than double the known GLOF count and identify the southern Himalayas as a hotspot region, compared to the more rarely affected Hindu Kush-Karakoram ranges. Nevertheless, the average annual frequency of 1.3 GLOFs has no credible posterior trend despite reported increases in glacial lake areas in most of the HKKHN3,8, so that GLOF activity per unit lake area has decreased since the late 1980s. We conclude that learning more about the frequency and magnitude of outburst triggers, rather than focusing solely on rapidly growing glacial lakes, might improve the appraisal of GLOF hazards.}, language = {en} } @article{MelnickYildirimHillemannetal.2017, author = {Melnick, Daniel and Yildirim, Cengiz and Hillemann, Christian and Garcin, Yannick and Ciner, T. Attila and Perez-Gussinye, Marta and Strecker, Manfred}, title = {Slip along the Sultanhani Fault in Central Anatolia from deformed Pleistocene shorelines of palaeo-lake Konya and implications for seismic hazards in low-strain regions}, series = {Geophysical journal international}, volume = {209}, journal = {Geophysical journal international}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggx074}, pages = {1431 -- 1454}, year = {2017}, abstract = {Central Anatolia is a low-relief, high-elevation region where decadal-scale deformation rates estimated from space geodesy suggest low strain rates within a stiff microplate. However, numerous Quaternary faults have been mapped within this low-strain region and estimating their slip rate and seismic potential is important for hazard assessments in an area of increasing infrastructural development. Here we focus on the Sultanhani Fault (SF), which constitutes an integral part of the Eskisehir-Cihanbeyli Fault System, and use deformed maximum highstand shorelines of palaeo-lake Konya to estimate tectonic slip rates at millennial scale. Some of these shorelines were previously interpreted as fault scarps, but we provide conclusive evidence for their erosional origin. We found that shoreline-angle elevations estimated from differential GPS profiles record vertical displacements of 10.2 m across the SF. New radiocarbon ages of lacustrine molluscs suggest 22.4 m of relative lake-level fall between 22.1 +/- 0.3 and 21.7 +/- 0.4 cal. kaBP, constraining the timing of abrupt abandonment of the highstand shoreline. Models of lithospheric rebound associated with regressions of the Tuz Golu and Konya palaeolakes predict only similar to 1 m of regional-scale uplift across the Konya Basin. Dislocation models of displaced shorelines suggest fault-slip rates of 1.5 and 1.8 mm yr(-1) for planar and listric fault geometries, respectively, providing reasonable results for the latter. We found fault scarps in the Nasuhpinar mudflat that likely represent the most recent ground-breaking rupture of the SF, with an average vertical displacement of 1.2 +/- 0.5 m estimated from 54 topographic profiles, equivalent to a M similar to 6.5-6.9 earthquake based on empirical scaling laws. If such events were characteristic during the ultimate 21 ka, a relatively short recurrence time of similar to 800-900 yr would be needed to account for the millennial slip rate. Alternatively, the fault scarp at Nasuhpinar might represent a larger earthquake requiring more frequent smaller events to account for the millennial rate. The relatively fast slip rate of the SF over the past 21 ka is unlikely to have persisted over longer timescales and might reflect spatiotemporal variations in deformation rates within kinematically-linked fault systems within Central Anatolia, or a transient perturbation to the local stress field or fault strength. Such perturbation might have been related to climatically controlled changes in surface and near-surface loads and by interactions among the different tectonic processes that have been proposed to drive the overall slow uplift and associated extension in the Central Anatolian Plateau.}, language = {en} }