@article{SchuckJanssenSchleicheretal.2018, author = {Schuck, Bernhard and Janssen, C. and Schleicher, Anja Maria and Toy, Virginia G. and Dresen, Georg}, title = {Microstructures imply cataclasis and authigenic mineral formation}, series = {Journal of structural geology}, volume = {110}, journal = {Journal of structural geology}, publisher = {Elsevier}, address = {Oxford}, issn = {0191-8141}, doi = {10.1016/j.jsg.2018.03.001}, pages = {172 -- 186}, year = {2018}, abstract = {The Alpine Fault is capable of generating large (MW > 8) earthquakes and is the main geohazard on South Island, NZ, and late in its 250-291-year seismic cycle. To minimize its hazard potential, it is indispensable to identify and understand the processes influencing the geomechanical behavior and strength-evolution of the fault. High-resolution microstructural, mineralogical and geochemical analyses of the Alpine Fault's core demonstrate wall rock fragmentation, assisted by mineral dissolution, and cementation resulting in the formation of a fine-grained principal slip zone (PSZ). A complex network of anastomosing and mutually cross-cutting calcite veins implies that faulting occurred during episodes of dilation, slip and sealing. Fluid-assisted dilatancy leads to a significant volume increase accommodated by vein formation in the fault core. Undeformed euhedral chlorite crystals and calcite veins that have cut footwall gravels demonstrate that these processes occurred very close to the Earth's surface. Microstructural evidence indicates that cataclastic processes dominate the deformation and we suggest that powder lubrication and grain rolling, particularly influenced by abundant nanoparticles, play a key role in the fault core's velocity-weakening behavior rather than frictional sliding. This is further supported by the absence of smectite, which is reasonable given recently measured geothermal gradients of more than 120 °C km-1 and the impermeable nature of the PSZ, which both limit the growth of this phase and restrict its stability to shallow depths. Our observations demonstrate that high-temperature fluids can influence authigenic mineral formation and thus control the fault's geomechanical behavior and the cyclic evolution of its strength.}, language = {en} } @article{HalamaKonradSchmolke2015, author = {Halama, Ralf and Konrad-Schmolke, Matthias}, title = {Retrograde metasomatic effects on phase assemblages in an interlayered blueschist-greenschist sequence (Coastal Cordillera, Chile)}, series = {Lithos : an international journal of mineralogy, petrology, and geochemistry}, volume = {216}, journal = {Lithos : an international journal of mineralogy, petrology, and geochemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0024-4937}, doi = {10.1016/j.lithos.2014.12.004}, pages = {31 -- 47}, year = {2015}, abstract = {Interlayered blueschists and greenschists of the Coastal Cordillera (Chile) are part of a Late Palaeozoic accretionary complex. They represent metavolcanic rocks with oceanic affinities based on predominantly 01B-type REE patterns and immobile trace element ratios. Both rock types have similar mineralogies, albeit with different mineral modal abundances. Amphibole is the major mafic mineral and varies compositionally from glaucophane to actinolite. The presence of glaucophane relicts as cores in zoned amphiboles in both blueschists and greenschists is evidence for a pervasive high-pressure metamorphic stage, indicating that tectonic juxtaposition is an unlikely explanation for the cm-dm scale interlayering. During exhumation, a retrograde greenschist-facies overprint stabilized chlorite + albite + winchitic/actinolitic amphibole + phengitic white mica +/- epidote +/- K-feldspar at 0.4 +/- 0.1 GPa. Geochemical variability can be partly ascribed to primary magmatic and partly to secondary metasomatic processes that occurred under greenschist-facies conditions. Isocon diagrams of several adjacent blueschist-greenschist pairs with similar protolith geochemistry were used to evaluate metasomatic changes due to retrograde fluid-rock interaction. The most important geochemical changes are depletion of Si and Na and addition of water in the greenschists compared to the blueschists. Transition metals and LILE are mobilized to varying degrees. The unsystematic deviations from magmatic fractionation trends suggest open system conditions and influx of an external fluid. Pseudosection and water isopleth calculations show that the rocks were dehydrating during most of their exhumation history and remained at water-saturated conditions. The mineralogical changes, in particular breakdown of blue amphibole and replacement by chlorite, albite and calcic/sodic-calcic amphibole, are the prime cause for the distinct coloring. Pseudo-binary phase diagrams were used as a means to link bulk rock geochemical variability to modal and chemical changes in the mineralogy. The geochemical changes induced by fluid-rock interaction are important in two ways: First, the bulk rock chemistry is altered, leading to the stabilization of higher modal proportions of chlorite in the greenschists. Second, the retrograde overprint is a selective, layer-parallel fluid infiltration process, causing more intense greenschist-facies recrystallization in greenschist layers and therefore preferential preservation of blue amphibole in blueschist layers. Hence, the distinct colors were acquired by a combination of compositional variability, both primary magmatic and secondary metasomatic, and the different intensity of retrograde fluid infiltration. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @article{WawrzenitzKroheBaziotisetal.2015, author = {Wawrzenitz, Nicole and Krohe, Alexander and Baziotis, Ioannis and Mposkos, Evripidis and Kylander-Clark, Andrew R. C. and Romer, Rolf L.}, title = {LASS U-Th-Pb monazite and rutile geochronology of felsic high-pressure granulites (Rhodope, N Greece): Effects of fluid, deformation and metamorphic reactions in local subsystems}, series = {Lithos : an international journal of mineralogy, petrology, and geochemistry}, volume = {232}, journal = {Lithos : an international journal of mineralogy, petrology, and geochemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0024-4937}, doi = {10.1016/j.lithos.2015.06.029}, pages = {266 -- 285}, year = {2015}, abstract = {The specific chemical composition of monazite in shear zones is controlled by the syndeformation dissolution-precipitation reactions of the rock-forming minerals. This relation can be used for dating deformation, even when microfabric characteristics like shape preferred orientation or intracrystalline deformation of monazite itself are missing. Monazite contemporaneously formed in and around the shear zones may have different compositions. These depend on the local chemical context rather than reflecting successive crystallization episodes of monazite. This is demonstrated in polymetamorphic, mylonitic high-pressure (HP) garnet-kyanite granulites of the Alpine Sidironero Complex (Rhodope UHP terrain, Northern Greece). The studied mylonitic rocks escaped from regional migmatization at 40-36 Ma and from subsequent shearing through cooling until 36 Ma. In-situ laser-ablation split-stream inductively-coupled plasma mass spectrometry (LASS) analyses have been carried out on monazite from micro-scale shear zones, from pre-mylonitic microlithons as well as of monazite inclusions in relictic minerals complimented by U-Pb data on rutile and Rb-Sr data of biotite. Two major metamorphic episodes, Mesozoic and Cenozoic, are constrained. Chemical compositions, isotopic characteristics and apparent ages systematically vary among monazite of four different microfabric domains (I-IV). Within three pre-mylonitic domains (inclusions in (I) pre-mylonitic kyanite and (II) garnet porphyroclasts, and (III) in pre-mylonitic microlithons) monazite yields ages of ca. 130-150 Ma for HP-granulite metamorphism, in line with previous geochronological results in the area. Patchy alteration of the pre-mylonitic monazite by intra-grain dissolution-precipitation processes variably increased negative Eu anomaly and reduced the HREE contents. The apparent age of this altered monazite is reduced. Monazite in the syn-mylonitic shear bands (IV) differs in chemical composition from unaltered and altered monazite of the three pre-mylonitic domains by having a significantly more pronounced negative Eu anomaly, a flatter HREE pattern, and high Th content. These compositional characteristics are linked with syn-mylonitic formation of plagioclase and resorption of garnet in the shear bands under amphibolite fades conditions. The absence of pre-mylonitic monazite in the shear zones, in contrast to the other domains, suggests complete dissolution of old and formation of new monazite. This probably results from an increased alkalinity and reactivity of the fluid that again is controlled by syn-mylonitic interaction with feldspar and apatite in the shear zones. There, the deformation was accommodated by dissolution precipitation creep at ca. 690 +/- 50 degrees C and 6-7.5 kbar. Growth of monazite at 55 +/- 1 Ma dates this deformation, which precedes the regional migmatization of the Sidironero Complex, whereas rutile and biotite ages reflect these later stages. This new pressure-temperature-time constraint for a relictic deformation structure provides insight into the still missing parts of the overall metamorphic, deformation and exhumation processes of the UHP units in the Rhodope. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} }