@article{PilusoVukicevieNoecheletal.2018, author = {Piluso, Susanna and Vukicevie, Radovan and N{\"o}chel, Ulrich and Braune, Steffen and Lendlein, Andreas and Neffe, Axel T.}, title = {Sequential alkyne-azide cycloadditions for functionalized gelatin hydrogel formation}, series = {European polymer journal}, volume = {100}, journal = {European polymer journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0014-3057}, doi = {10.1016/j.eurpolymj.2018.01.017}, pages = {77 -- 85}, year = {2018}, abstract = {While click chemistry reactions for biopolymer network formation are attractive as the defined reactions may allow good control of the network formation and enable subsequent functionalization, tailoring of gelatin network properties over a wide range of mechanical properties has yet to be shown. Here, it is demonstrated that copper-catalyzed alkyne-azide cycloaddition of alkyne functionalized gelatin with diazides gave hydrogel networks with properties tailorable by the ratio of diazide to gelatin and diazide rigidity. 4,4′-diazido-2,2′-stilbenedisulfonic acid, which has been used as rigid crosslinker, yielded hydrogels with Young's moduli E of 50-390 kPa and swelling degrees Q of 150-250 vol.\%, while the more flexible 1,8-diazidooctane resulted in hydrogels with E = 125-280 kPa and Q = 225-470 vol.\%. Storage moduli could be varied by two orders of magnitude (G′ = 100-20,000 Pa). An indirect cytotoxicity test did not show cytotoxic properties. Even when employing 1:1 ratios of alkyne and azide moieties, the hydrogels were shown to contain both, unreacted alkyne groups on the gelatin backbone as well as dangling chains carrying azide groups as shown by reaction with functionalized fluorescein. The free groups, which can be tailored by the employed ratio of the reactants, are accessible for covalent attachment of drugs, as was demonstrated by functionalization with dexamethasone. The sequential network formation and functionalization with click chemistry allows access to multifunctional materials relevant for medical applications.}, language = {en} } @article{GoebelStoltenbergKrehletal.2016, author = {G{\"o}bel, Ronald and Stoltenberg, Marcus and Krehl, Stefan and Biolley, Christine and Rothe, Regina and Schmidt, Bernd and Hesemann, Peter and Taubert, Andreas}, title = {A Modular Approach towards Mesoporous Silica Monoliths with Organically Modified Pore Walls: Nucleophilic Addition, Olefin Metathesis, and Cycloaddition}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, volume = {6}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201500638}, pages = {2088 -- 2099}, year = {2016}, abstract = {We have synthesized mesoporous silica (monoliths) with defined surface chemistry by means of a number of addition reactions: (i) coupling of an isocyanate to a surface-immobilized thiol, (ii) addition of an epoxide to a surface-immobilized thiol, (iii) cross-metathesis between two olefins, and (iv) Huisgen [2+3] cycloaddition of an alkyne-functionalized silica monolith with an azide. Functionalization of the mesopores was observed, but there are significant differences between individual approaches. Isocyanate and epoxide additions lead to high degrees of functionalization, whereas olefin metathesis and [2+3] cycloaddition are less effective. We further show that the efficiency of the modification is about twice as high in mesoporous silica particles than in macroscopic silica monoliths.}, language = {en} } @article{SeckerRobinsonSchlaad2015, author = {Secker, Christian and Robinson, Joshua W. and Schlaad, Helmut}, title = {Alkyne-X modification of polypeptoids}, series = {European polymer journal}, volume = {62}, journal = {European polymer journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0014-3057}, doi = {10.1016/j.eurpolymj.2014.08.028}, pages = {394 -- 399}, year = {2015}, abstract = {Poly(N-propargyl glycine) (PNPG) can be readily prepared by ring-opening polymerization of N-propargyl glycine N-carboxyanhydride (NCA) and modified using various addition reactions such as copper catalyzed [3+2] cycloaddition of azide, radical (photo-)addition of thiol, nucleophilic addition of ethylene oxide, and thermal induced cross-linking. It is demonstrated that PNPG can serve as a modular platform to produce a bibliography of novel functional polypeptoid or pseudopeptide materials, including polypeptoid ionic liquids and graft copolymers.}, language = {en} } @article{BrosnanSchlaad2014, author = {Brosnan, Sarah M. and Schlaad, Helmut}, title = {Modification of polypeptide materials by Thiol-X chemistry}, series = {Polymer : the international journal for the science and technology of polymers}, volume = {55}, journal = {Polymer : the international journal for the science and technology of polymers}, number = {22}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-3861}, doi = {10.1016/j.polymer.2014.08.067}, pages = {5511 -- 5516}, year = {2014}, abstract = {Thiol-X chemistry has proven to be a valuable toolbox for modification of peptides, proteins, monomers, and polymers. Recently, this has become especially true for the modification of polypeptides (monomers or polymers), which has resulted in a plethora of novel polymers and materials. With this in mind, this highlight focuses on the recent literature concerning the modification of polypeptides by the use of thiol-X chemistry, in particular to synthetic polypeptides either at the monomer or polymer stage modified by thiol-ene, -Michael addition, and -yne chemistries. (C) 2014 Published by Elsevier Ltd.}, language = {en} } @article{AstRutledgeTodd2012, author = {Ast, Sandra and Rutledge, Peter J. and Todd, Matthew H.}, title = {Reversing the triazole topology in a cyclam-triazole-dye ligand gives a 10-fold brighter signal response to Zn2+ in aqueous solution}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, number = {34}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201201072}, pages = {5611 -- 5615}, year = {2012}, abstract = {The fluorescence response of a set of cyclam-triazole-dye ligands is controlled by the appended dye, but simple reversal of the triazole topology affords a novel probe for Zn2+ with a longer fluorescence lifetime and higher fluorescence quantum yield upon Zn2+ binding ( = 2.0 ns, Phi(f) = 0.76).}, language = {en} }