@article{SchulzMehrabiMuellerWerkmeisteretal.2018, author = {Schulz, Eike C. and Mehrabi, Pedram and M{\"u}ller-Werkmeister, Henrike and Tellkamp, Friedjof and Jha, Ajay and Stuart, William and Persch, Elke and De Gasparo, Raoul and Diederich, Fran{\c{c}}ois and Pai, Emil F. and Miller, R. J. Dwayne}, title = {The hit-and-return system enables efficient time-resolved serial synchrotron crystallography}, series = {Nature methods : techniques for life scientists and chemists}, volume = {15}, journal = {Nature methods : techniques for life scientists and chemists}, number = {11}, publisher = {Nature Publishing Group (London)}, address = {London}, issn = {1548-7091}, doi = {10.1038/s41592-018-0180-2}, pages = {901 -- 904}, year = {2018}, abstract = {We present a 'hit-and-return' (HARE) method for time-resolved serial synchrotron crystallography with time resolution from milliseconds to seconds or longer. Timing delays are set mechanically, using the regular pattern in fixed-target crystallography chips and a translation stage system. Optical pump-probe experiments to capture intermediate structures of fluoroacetate dehalogenase binding to its ligand demonstrated that data can be collected at short (30 ms), medium (752 ms) and long (2,052 ms) intervals.}, language = {en} }