@article{PreussevanderMeerDeshpandeetal.2011, author = {Preusse, Franziska and van der Meer, Elke and Deshpande, Gopikrishna and Kr{\"u}ger, Frank and Wartenburger, Isabell}, title = {Fluid intelligence allows flexible recruitment of the parieto-frontal network in analogical reasoning}, series = {Frontiers in human neuroscienc}, volume = {5}, journal = {Frontiers in human neuroscienc}, number = {3}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1662-5161}, doi = {10.3389/fnhum.2011.00022}, pages = {14}, year = {2011}, abstract = {Fluid intelligence is the ability to think flexibly and to understand abstract relations. People with high fluid intelligence (hi-fluIQ) perform better in analogical reasoning tasks than people with average fluid intelligence (ave-fluIQ). Although previous neuroimaging studies reported involvement of parietal and frontal brain regions in geometric analogical reasoning (which is a prototypical task for fluid intelligence), however, neuroimaging findings on geometric analogical reasoning in hi-fluIQ are sparse. Furthermore, evidence on the relation between brain activation and intelligence while solving cognitive tasks is contradictory. The present study was designed to elucidate the cerebral correlates of geometric analogical reasoning in a sample of hi-fluIQ and ave-fluIQ high school students. We employed a geometric analogical reasoning task with graded levels of task difficulty and confirmed the involvement of the parieto-frontal network in solving this task. In addition to characterizing the brain regions involved in geometric analogical reasoning in hi-fluIQ and ave-fluIQ, we found that blood oxygenation level dependency (BOLD) signal changes were greater for hi-fluIQ than for ave-fluIQ in parietal brain regions. However, ave-fluIQ showed greater BOLD signal changes in the anterior cingulate cortex and medial frontal gyrus than hi-fluIQ. Thus, we showed that a similar network of brain regions is involved in geometric analogical reasoning in both groups. Interestingly, the relation between brain activation and intelligence is not mono-directional, but rather, it is specific for each brain region. The negative brain activation-intelligence relationship in frontal brain regions in hi-fluIQ goes along with a better behavioral performance and reflects a lower demand for executive monitoring compared to ave-fluIQ individuals. In conclusion, our data indicate that flexibly modulating the extent of regional cerebral activity is characteristic for fluid intelligence.}, language = {en} } @article{MuehlbauerMettlerRothetal.2014, author = {M{\"u}hlbauer, Thomas and Mettler, Claude and Roth, Ralf and Granacher, Urs}, title = {One-leg standing performance and muscle activity: Are there limb differences?}, series = {Journal of applied biomechanics}, volume = {30}, journal = {Journal of applied biomechanics}, number = {3}, publisher = {Human Kinetics Publ.}, address = {Champaign}, issn = {1065-8483}, doi = {10.1123/jab.2013-0230}, pages = {407 -- 414}, year = {2014}, abstract = {The purpose of this study was to compare static balance performance and muscle activity during one-leg standing on the dominant and nondominant leg under various sensory conditions with increased levels of task difficulty. Thirty healthy young adults (age: 23 +/- 2 years) performed one-leg standing tests for 30 s under three sensory conditions (ie, eyes open/firm ground; eyes open/foam ground [elastic pad on top of the balance plate]; eyes closed/firm ground). Center of pressure displacements and activity of four lower leg muscles (ie, m. tibialis anterior [TA], m. soleus [SOL], m. gastrocnemius medialis [GAS], m. peroneus longus [PER]) were analyzed. An increase in sensory task difficulty resulted in deteriorated balance performance (P < .001, effect size [ES] = .57-2.54) and increased muscle activity (P < .001, ES = .50-1.11) for all but two muscles (ie, GAS, PER). However, regardless of the sensory condition, one-leg standing on the dominant as compared with the nondominant limb did not produce statistically significant differences in various balance (P > .05, ES = .06-.22) and electromyographic (P > .05, ES = .03-.13) measures. This indicates that the dominant and the nondominant leg can be used interchangeably during static one-leg balance testing in healthy young adults.}, language = {en} }