@article{SchmidtHennawiWorsecketal.2018, author = {Schmidt, Tobias M. and Hennawi, Joseph F. and Worseck, Gabor and Davies, Frederick B. and Lukic, Zarija and O{\~n}orbe, Jose}, title = {Modeling the HeII transverse proximity effect}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {861}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aac8e4}, pages = {20}, year = {2018}, abstract = {The He II transverse proximity effect-enhanced He II Ly alpha transmission in a background sightline caused by the ionizing radiation of a foreground quasar-offers a unique opportunity to probe the emission properties of quasars, in particular the emission geometry (obscuration, beaming) and the quasar lifetime. Building on the foreground quasar survey published in Schmidt et al., we present a detailed model of the He II transverse proximity effect, specifically designed to include light travel time effects, finite quasar ages, and quasar obscuration. We postprocess outputs from a cosmological hydrodynamical simulation with a fluctuating He II ultraviolet background model, with the added effect of the radiation from a single bright foreground quasar. We vary the age t(age) and obscured sky fractions Omega(obsc) of the foreground quasar, and explore the resulting effect on the He II transverse proximity effect signal. Fluctuations in intergalactic medium density and the ultraviolet background, as well as the unknown orientation of the foreground quasar, result in a large variance of the He II Ly alpha transmission along the background sightline. We develop a fully Bayesian statistical formalism to compare far-ultraviolet He II Ly alpha transmission spectra of the background quasars to our models, and extract joint constraints on t(age) and Omega(obsc) for the six Schmidt et al. foreground quasars with the highest implied He II photoionization rates. Our analysis suggests a bimodal distribution of quasar emission properties, whereby one foreground quasar, associated with a strong He II transmission spike, is relatively old (22 Myr) and unobscured (Omega(obsc) < 35\%), whereas three others are either younger than 10 Myr or highly obscured (Omega(obsc) > 70\%).}, language = {en} } @article{WorseckDaviesHennawietal.2019, author = {Worseck, Gabor and Davies, Frederick B. and Hennawi, Joseph F. and Prochaska, J. Xavier}, title = {The Evolution of the He II-ionizing Background at Redshifts 2.3 < z < 3.8 Inferred from a Statistical Sample of 24 HST/COS He II Lyα Absorption Spectra}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {875}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab0fa1}, pages = {25}, year = {2019}, abstract = {We present measurements of the large-scale (≈40 comoving Mpc) effective optical depth of He ii Lyα absorption, \${\tau }_{\mathrm{eff}}\$, at 2.54 < z < 3.86 toward 16 He ii-transparent quasars observed with the Cosmic Origins Spectrograph on the Hubble Space Telescope, to characterize the ionization state of helium in the intergalactic medium (IGM). We provide the first statistical sample of \${\tau }_{\mathrm{eff}}\$ measurements in six signal-to-noise ratio gsim3 He ii sightlines at z > 3.5, and study the redshift evolution and sightline-to-sightline variance of \${\tau }_{\mathrm{eff}}\$ in 24 He ii sightlines. We confirm an increase of the median \${\tau }_{\mathrm{eff}}\$ from sime2 at z = 2.7 to \${\tau }_{\mathrm{eff}}\gtrsim 5\$ at z > 3, and a scatter in \${\tau }_{\mathrm{eff}}\$ that increases with redshift. The z > 3.5 He ii absorption is predominantly saturated, but isolated narrow (Δv < 650 km s-1) transmission spikes indicate patches of reionized helium. We compare our measurements to predictions for a range of UV background models applied to outputs of a large-volume (146 comoving Mpc)3 hydrodynamical simulation by forward-modeling our sample's quality and size. At z > 2.74, the variance in \${\tau }_{\mathrm{eff}}\$ significantly exceeds expectations for a spatially uniform UV background, but is consistent with a fluctuating radiation field sourced by variations in the quasar number density and the mean free path in the post-reionization IGM. We develop a method to infer the approximate median He ii photoionization rate \${{\rm{\Gamma }}}_{\mathrm{He}{\rm{II}}}\$ of a fluctuating UV background from the median \${\tau }_{\mathrm{eff}}\$, finding a factor sime5 decrease in \${{\rm{\Gamma }}}_{\mathrm{He}{\rm{II}}}\$ between z sime 2.6 and z sime 3.1. At z sime 3.1, \${{\rm{\Gamma }}}_{\mathrm{He}{\rm{II}}}=\left[{9.1}_{-1.2}^{+1.1}\,(\mathrm{stat}.){\,}_{-3.4}^{+2.4}\,(\mathrm{sys}.)\right]\times {10}^{-16}\$ s-1 corresponds to a median He ii fraction of sime2.5\%, indicating that our data probe the tail end of He ii reionization.}, language = {en} }