@article{BergerBaldermannRuppel2017, author = {Berger, Beatrice and Baldermann, Susanne and Ruppel, Silke}, title = {The plant growth-promoting bacterium Kosakonia radicincitans improves fruit yield and quality of Solanum lycopersicum}, series = {Journal of the Science of Food and Agriculture}, volume = {97}, journal = {Journal of the Science of Food and Agriculture}, publisher = {Wiley}, address = {Hoboken}, issn = {0022-5142}, doi = {10.1002/jsfa.8357}, pages = {4865 -- 4871}, year = {2017}, abstract = {BACKGROUNDProduction and the quality of tomato fruits have a strong economic relevance. Microorganisms such as the plant growth-promoting bacterium (PGPB) Kosakonia radicincitans (DSM 16656) have been demonstrated to improve shoot and root growth of young tomato plants, but data on yield increase and fruit quality by K. radicincitans are lacking. RESULTSThis study investigated how K. radicincitans affects tomato fruits. After inoculation of tomato seeds with K. radicincitans or a sodium chloride buffer control solution, stalk length, first flowering and the amount of ripened fruits produced by inoculated and non-inoculated plants were monitored over a period of 21 weeks. Inoculation of tomato seeds with K. radicincitans accelerated flowering and ripening of tomato fruits. Sugars, acidity, amino acids, volatile organic compounds and carotenoids in the fruits were also analyzed. CONCLUSIONIt was found that the PGPBK. radicincitans affected the amino acid, sugar and volatile composition of ripened fruits, contributing to a more pleasant-tasting fruit without forfeiting selected quality indicators. (c) 2017 Society of Chemical Industry}, language = {en} } @article{ErrardUlrichsKuehneetal.2015, author = {Errard, Audrey and Ulrichs, Christian and Kuehne, Stefan and Mewis, Inga and Drungowski, Mario and Schreiner, Monika and Baldermann, Susanne}, title = {Single- versus multiple-pest infestation affects differently the Biochemistry of Tomato (Solanum lycopersicum 'Ailsa Craig')}, series = {Journal of agricultural and food chemistry : a publication of the American Chemical Society}, volume = {63}, journal = {Journal of agricultural and food chemistry : a publication of the American Chemical Society}, number = {46}, publisher = {American Chemical Society}, address = {Washington}, issn = {0021-8561}, doi = {10.1021/acs.jafc.5b03884}, pages = {10103 -- 10111}, year = {2015}, abstract = {Tomato is susceptible to pest infestations by both spider mites and aphids. The effects of each individual pest on plants are known, whereas multiple-pest infestations have received little interest. We studied the effects of single-versus multiple-pest infestation by Tetranychus urticae and Myzus persicae on tomato biochemistry (Solanum lycopersicum) by combining a metabolomic approach and analyses of carotenoids using UHPLC-ToF-MS and volatiles using GC-MS. Plants responded differently to aphids and mites after 3 weeks of infestation, and a multiple infestation induced a specific metabolite composition in plants. In addition, we showed that volatiles emissions differed between the adaxial and abaxial leaf epidermes and identified compounds emitted particularly in response to a multiple infestation (cyclohexadecane, dodecane, aromadendrene, and beta-elemene). Finally, the carotenoid concentrations in leaves and stems were more affected by multiple than single infestations. Our study highlights and discusses the interplay of biotic stressors within the terpenoid metabolism.}, language = {en} }