@article{JavharChenBaoetal.2019, author = {Javhar, Aminov and Chen, Xi and Bao, Anming and Jamshed, Aminov and Yunus, Mamadjanov and Jovid, Aminov and Latipa, Tuerhanjiang}, title = {Comparison of Multi-Resolution Optical Landsat-8, Sentinel-2 and Radar Sentinel-1 Data for Automatic Lineament Extraction}, series = {Remote sensing}, volume = {11}, journal = {Remote sensing}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2072-4292}, doi = {10.3390/rs11070778}, pages = {29}, year = {2019}, abstract = {Lineament mapping, which is an important part of any structural geological investigation, is made more efficient and easier by the availability of optical as well as radar remote sensing data, such as Landsat and Sentinel with medium and high spatial resolutions. However, the results from these multi-resolution data vary due to their difference in spatial resolution and sensitivity to soil occupation. The accuracy and quality of extracted lineaments depend strongly on the spatial resolution of the imagery. Therefore, the aim of this study was to compare the optical Landsat-8, Sentinel-2A, and radar Sentinel-1A satellite data for automatic lineament extraction. The framework of automatic approach includes defining the optimal parameters for automatic lineament extraction with a combination of edge detection and line-linking algorithms and determining suitable bands from optical data suited for lineament mapping in the study area. For the result validation, the extracted lineaments are compared against the manually obtained lineaments through the application of directional filtering and edge enhancement as well as to the lineaments digitized from the existing geological maps of the study area. In addition, a digital elevation model (DEM) has been utilized for an accuracy assessment followed by the field verification. The obtained results show that the best correlation between automatically extracted lineaments, manual interpretation, and the preexisting lineament map is achieved from the radar Sentinel-1A images. The tests indicate that the radar data used in this study, with 5872 and 5865 lineaments extracted from VH and VV polarizations respectively, is more efficient for structural lineament mapping than the Landsat-8 and Sentinel-2A optical imagery, from which 2338 and 4745 lineaments were extracted respectively.}, language = {en} }