@article{HohmannBuchmannWittetal.2012, author = {Hohmann, S. and Buchmann, Arlette F. and Witt, S. H. and Rietschel, M. and Jennen-Steinmetz, Christine and Schmidt, M. H. and Esser, G{\"u}nter and Banaschewski, Tobias and Laucht, Manfred}, title = {Increasing association between a neuropeptide Y promoter polymorphism and body mass index during the course of development}, series = {Pediatric obesity}, volume = {7}, journal = {Pediatric obesity}, number = {6}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {2047-6310}, doi = {10.1111/j.2047-6310.2012.00069.x}, pages = {453 -- 460}, year = {2012}, abstract = {Objective: To investigate the association of the neuropeptide Y (NPY) promoter polymorphism rs16147 with body mass index (BMI) during the course of development from infancy to adulthood. Design: Longitudinal, prospective study of a German community sample. Subjects: n = 306 young adults (139 males, 167 females). Measurements: Participants' body weight and height were assessed at the ages of 3 months and 2, 4.5, 8, 11, 15 and 19 years. NPY rs16147 was genotyped. Results: Controlling for a number of possible confounders, homozygote carriers of the rs16147 C allele exhibited significantly lower BMI scores when compared with individuals carrying the T allele. In addition, a significant genotype by age interaction emerged, indicating that the genotype effect increased during the course of development. Conclusions: This is the first longitudinal study to report an association between rs16147 and BMI during childhood and adolescence. The finding that this effect increased during the course of development may either be due to age-dependent alterations in gene expression or to maturation processes within the weight regulation circuits of the central nervous system.}, language = {en} } @article{HuynenSuzukiOguraetal.2014, author = {Huynen, Leon and Suzuki, Takayuki and Ogura, Toshihiko and Watanabe, Yusuke and Millar, Craig D. and Hofreiter, Michael and Smith, Craig and Mirmoeini, Sara and Lambert, David M.}, title = {Reconstruction and in vivo analysis of the extinct tbx5 gene from ancient wingless moa (Aves: Dinornithiformes)}, series = {BMC evolutionary biology}, volume = {14}, journal = {BMC evolutionary biology}, publisher = {BioMed Central}, address = {London}, issn = {1471-2148}, doi = {10.1186/1471-2148-14-75}, pages = {8}, year = {2014}, abstract = {Background: The forelimb-specific gene tbx5 is highly conserved and essential for the development of forelimbs in zebrafish, mice, and humans. Amongst birds, a single order, Dinornithiformes, comprising the extinct wingless moa of New Zealand, are unique in having no skeletal evidence of forelimb-like structures. Results: To determine the sequence of tbx5 in moa, we used a range of PCR-based techniques on ancient DNA to retrieve all nine tbx5 exons and splice sites from the giant moa, Dinornis. Moa Tbx5 is identical to chicken Tbx5 in being able to activate the downstream promotors of fgf10 and ANF. In addition we show that missexpression of moa tbx5 in the hindlimb of chicken embryos results in the formation of forelimb features, suggesting that Tbx5 was fully functional in wingless moa. An alternatively spliced exon 1 for tbx5 that is expressed specifically in the forelimb region was shown to be almost identical between moa and ostrich, suggesting that, as well as being fully functional, tbx5 is likely to have been expressed normally in moa since divergence from their flighted ancestors, approximately 60 mya.}, language = {en} } @article{JacquesBornhorstSoaresetal.2019, author = {Jacques, Mauricio Tavares and Bornhorst, Julia and Soares, Marcell Valandro and Schwerdtle, Tanja and Garcia, Solange and Avila, Daiana Silva}, title = {Reprotoxicity of glyphosate-based formulation in Caenorhabditis elegans is not due to the active ingredient only}, series = {Environmental pollution}, volume = {252}, journal = {Environmental pollution}, publisher = {Elsevier}, address = {Oxford}, issn = {0269-7491}, doi = {10.1016/j.envpol.2019.06.099}, pages = {1854 -- 1862}, year = {2019}, abstract = {Pesticides guarantee us high productivity in agriculture, but the long-term costs have proved too high. Acute and chronic intoxication of humans and animals, contamination of soil, water and food are the consequences of the current demand and sales of these products. In addition, pesticides such as glyphosate are sold in commercial formulations which have inert ingredients, substances with unknown composition and proportion. Facing this scenario, toxicological studies that investigate the interaction between the active principle and the inert ingredients are necessary. The following work proposed comparative toxicology studies between glyphosate and its commercial formulation using the alternative model Caenorhabditis elegans. Worms were exposed to different concentrations of the active ingredient (glyphosate in monoisopropylamine salt) and its commercial formulation. Reproductive capacity was evaluated through brood size, morphological analysis of oocytes and through the MD701 strain (bcIs39), which allows the visualization of germ cells in apoptosis. In addition, the metal composition in the commercial formulation was analyzed by ICP-MS. Only the commercial formulation of glyphosate showed significant negative effects on brood size, body length, oocyte size, and the number of apoptotic cells. Metal analysis showed the presence of Hg, Fe, Mn, Cu, Zn, As, Cd and Pb in the commercial formulation, which did not cause reprotoxicity at the concentrations found. However, metals can bio-accumulate in soil and water and cause environmental impacts. Finally, we demonstrated that the addition of inert ingredients increased the toxic profile of the active ingredient glyphosate in C. elegans, which reinforces the need of components description in the product labels. (C) 2019 Elsevier Ltd. All rights reserved.}, language = {en} } @article{JunemannWinterhoffNordholzetal.2013, author = {Junemann, Alexander and Winterhoff, Moritz and Nordholz, Benjamin and Rottner, Klemens and Eichinger, Ludwig and Gr{\"a}f, Ralph and Faix, Jan}, title = {ForC lacks canonical formin activity but bundles actin filaments and is required for multicellular development of Dictyostelium cells}, series = {European journal of cell biology}, volume = {92}, journal = {European journal of cell biology}, number = {6-7}, publisher = {Elsevier}, address = {Jena}, issn = {0171-9335}, doi = {10.1016/j.ejcb.2013.07.001}, pages = {201 -- 212}, year = {2013}, abstract = {Diaphanous-related formins (DRFs) drive the nucleation and elongation of linear actin filaments downstream of Rho GTPase signalling pathways. Dictyostelium formin C (ForC) resembles a DRF, except that it lacks a genuine formin homology domain 1 (FH1), raising the questions whether or not ForC can nucleate and elongate actin filaments. We found that a recombinant ForC-FH2 fragment does not nucleate actin polymerization, but moderately decreases the rate of spontaneous actin assembly and disassembly, although the barbed-end elongation rate in the presence of the formin was not markedly changed. However, the protein bound to and crosslinked actin filaments into loose bundles of mixed polarity. Furthermore, ForC is an important regulator of morphogenesis since ForC-null cells are severely impaired in development resulting in the formation of aberrant fruiting bodies. Immunoblotting revealed that ForC is absent during growth, but becomes detectable at the onset of early aggregation when cells chemotactically stream together to form a multicellular organism, and peaks around the culmination stage. Fluorescence microscopy of cells ectopically expressing a GFP-tagged, N-terminal ForC fragment showed its prominent accumulation in the leading edge, suggesting that ForC may play a role in cell migration. In agreement with its expression profile, no defects were observed in random migration of vegetative mutant cells. Notably, chemotaxis of starved cells towards a source of cAMP was severely impaired as opposed to control. This was, however, largely due to a marked developmental delay of the mutant, as evidenced by the expression profile of the early developmental marker csA. In line with this, chemotaxis was almost restored to wild type levels after prolonged starvation. Finally, we observed a complete failure of phototaxis due to abolished slug formation and a massive reduction of spores consistent with forC promoter-driven expression of beta-galactosidase in prespore cells. Together, these findings demonstrate ForC to be critically involved in signalling of the cytoskeleton during various stages of development.}, language = {en} } @article{KayhanWagnerMeyerO’Reillyetal.2019, author = {Kayhan Wagner, Ezgi and Meyer, Marlene and O'Reilly, J.X. and Hunnius, Sabine and Bekkering, Harold}, title = {Nine-month-old infants update their predictive models of a changing environment}, series = {Developmental Cognitive Neuroscience : a journal for cognitive, affective and social developmental neuroscience}, volume = {38}, journal = {Developmental Cognitive Neuroscience : a journal for cognitive, affective and social developmental neuroscience}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1878-9293}, doi = {10.1016/j.dcn.2019.100680}, pages = {8}, year = {2019}, abstract = {Humans generate internal models of their environment to predict events in the world. As the environments change, our brains adjust to these changes by updating their internal models. Here, we investigated whether and how 9-month-old infants differentially update their models to represent a dynamic environment. Infants observed a predictable sequence of stimuli, which were interrupted by two types of cues. Following the update cue, the pattern was altered, thus, infants were expected to update their predictions for the upcoming stimuli. Because the pattern remained the same after the no-update cue, no subsequent updating was required. Infants showed an amplified negative central (Nc) response when the predictable sequence was interrupted. Late components such as the PSW were also evoked in response to unexpected stimuli; however, we found no evidence for a differential response to the informational value of surprising cues at later stages of processing. Infants rather learned that surprising cues always signal a change in the environment that requires updating. Interestingly, infants responded with an amplified neural response to the absence of an expected change, suggesting a top-down modulation of early sensory processing in infants. Our findings corroborate emerging evidence showing that infants build predictive models early in life.}, language = {en} } @article{KohnenNickelsGeigisetal.2018, author = {Kohnen, Saskia and Nickels, Lyndsey and Geigis, Leonie and Coltheart, Max and McArthur, Genevieve and Castles, Anne}, title = {Variations within a subtype}, series = {Cortex : a journal devoted to the study of the nervous system and behaviour}, volume = {106}, journal = {Cortex : a journal devoted to the study of the nervous system and behaviour}, publisher = {Elsevier}, address = {Paris}, issn = {0010-9452}, doi = {10.1016/j.cortex.2018.04.008}, pages = {151 -- 163}, year = {2018}, abstract = {Surface dyslexia is characterised by poor reading of irregular words while nonword reading can be completely normal. Previous work has identified several theoretical possibilities for the underlying locus of impairment in surface dyslexia. In this study, we systematically investigated whether children with surface dyslexia showed different patterns of reading performance that could be traced back to different underlying levels of impairment. To do this, we tested 12 English readers, replicating previous work in Hebrew (Gvion \& Friedmann, 2013; 2016; Friedmann \& Lukov, 2008; Friedmann \& Gvion, 2016). In our sample, we found that poor irregular word reading was associated with deficits at the level of the orthographic input lexicon and with impaired access to meaning and spoken word forms after processing written words in the orthographic input lexicon. There were also children whose surface dyslexia seemed to be caused by impairments of the phonological output lexicon. We suggest that further evidence is required to unequivocally support a fourth pattern where the link between orthography and meaning is intact while the link between orthography and spoken word forms is not functioning. All patterns found were consistent with dual route theory while possible patterns of results, which would be inconsistent with dual route theory, were not detected. Crown Copyright (C) 2018 Published by Elsevier Ltd. All rights reserved.}, language = {en} } @article{MehnertAkhrifTelkemeyeretal.2013, author = {Mehnert, Jan and Akhrif, Atae and Telkemeyer, Silke and Rossi, Sonja and Schmitz, Christoph H. and Steinbrink, Jens and Wartenburger, Isabell and Obrig, Hellmuth and Neufang, Susanne}, title = {Developmental changes in brain activation and functional connectivity during response inhibition in the early childhood brain}, series = {Brain and development : official journal of the Japanese Society of Child Neurology}, volume = {35}, journal = {Brain and development : official journal of the Japanese Society of Child Neurology}, number = {10}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0387-7604}, doi = {10.1016/j.braindev.2012.11.006}, pages = {894 -- 904}, year = {2013}, abstract = {Response inhibition is an attention function which develops relatively early during childhood. Behavioral data suggest that by the age of 3, children master the basic task requirements for the assessment of response inhibition but performance improves substantially until the age of 7. The neuronal mechanisms underlying these developmental processes, however, are not well understood. In this study, we examined brain activation patterns and behavioral performance of children aged between 4 and 6 years compared to adults by applying a go/no-go paradigm during near-infrared spectroscopy (NIRS) brain imaging. We furthermore applied task-independent functional connectivity measures to the imaging data to identify maturation of intrinsic neural functional networks. We found a significant group x condition related interaction in terms of inhibition-related reduced right fronto-parietal activation in children compared to adults. In contrast, motor-related activation did not differ between age groups. Functional connectivity analysis revealed that in the children's group, short-range coherence within frontal areas was stronger, and long-range coherence between frontal and parietal areas was weaker, compared to adults. Our findings show that in children aged from 4 to 6 years fronto-parietal brain maturation plays a crucial part in the cognitive development of response inhibition.}, language = {en} } @article{MkaouerHammoudiNassibAmaraetal.2018, author = {Mkaouer, Bessem and Hammoudi-Nassib, Sarra and Amara, Samiha and Chaabene, Helmi}, title = {Evaluating the physical and basic gymnastics skills assessment for International Gymnastics Federation}, series = {Biology of Sport}, volume = {35}, journal = {Biology of Sport}, number = {4}, publisher = {Inst Sport}, address = {Warsaw}, issn = {0860-021X}, doi = {10.5114/biolsport.2018.78059}, pages = {383 -- 392}, year = {2018}, abstract = {This study aimed to determine the specific physical and basic gymnastics skills considered critical in gymnastics talent identification and selection as well as in promoting men's artistic gymnastics performances. Fifty-one boys from a provincial gymnastics team (age 11.03 ± 0.95 years; height 1.33 ± 0.05 m; body mass 30.01 ± 5.53 kg; body mass index [BMI] 16.89 ± 3.93 kg/m²) regularly competing at national level voluntarily participated in this study. Anthropometric measures as well as the men's artistic gymnastics physical test battery (i.e., International Gymnastics Federation [FIG] age group development programme) were used to assess the somatic and physical fitness profile of participants, respectively. The physical characteristics assessed were: muscle strength, flexibility, speed, endurance, and muscle power. Test outcomes were subjected to a principal components analysis to identify the most representative factors. The main findings revealed that power speed, isometric and explosive strength, strength endurance, and dynamic and static flexibility are the most determinant physical fitness aspects of the talent selection process in young male artistic gymnasts. These findings are of utmost importance for talent identification, selection, and development.}, language = {en} } @article{MuellerMuellerBauretal.2013, author = {M{\"u}ller, Juliane and M{\"u}ller, Steffen and Baur, Heiner and Mayer, Frank}, title = {Intra-individual gait speed variability in healthy children aged 1-15 years}, series = {Gait \& posture}, volume = {38}, journal = {Gait \& posture}, number = {4}, publisher = {Elsevier}, address = {Clare}, issn = {0966-6362}, doi = {10.1016/j.gaitpost.2013.02.011}, pages = {631 -- 636}, year = {2013}, abstract = {Introduction: Gait speed is one of the most commonly and frequently used parameters to evaluate gait development. It is characterized by high variability when comparing different steps in children. The objective of this study was to determine intra-individual gait speed variability in children. Methods: Gait speed measurements (6-10 trials across a 3 m walkway) were performed and analyzed in 8263 children, aged 1-15 years. The coefficient of variation (CV) served as a measure for intra-individual gait speed variability measured in 6.6 +/- 1.0 trials per child. Multiple linear regression analysis was conducted to evaluate the influence of age and body height on changes in variability. Additionally, a subgroup analysis for height within the group of 6-year-old children was applied. Results: A successive reduction in gait speed variability (CV) was observed for age groups (age: 1-15 years) and body height groups (height: 0.70-1.90 m). The CV in the oldest subjects was only one third of the CV (CV 6.25 +/- 3.52\%) in the youngest subjects (CV 16.58 +/- 10.01\%). Up to the age of 8 years (or 1.40 m height) there was a significant reduction in CV over time, compared to a leveling off for the older (taller) children. Discussion: The straightforward approach measuring gait speed variability in repeated trials might serve as a fundamental indicator for gait development in children. Walking velocity seems to increase to age 8. Enhanced gait speed consistency of repeated trials develops up to age 15.}, language = {en} } @article{MuellerRoeberBalazadeh2014, author = {M{\"u}ller-R{\"o}ber, Bernd and Balazadeh, Salma}, title = {Auxin and its role in plant senescence}, series = {Journal of plant growth regulation}, volume = {33}, journal = {Journal of plant growth regulation}, number = {1}, publisher = {Springer}, address = {New York}, issn = {0721-7595}, doi = {10.1007/s00344-013-9398-5}, pages = {21 -- 33}, year = {2014}, abstract = {Leaf senescence represents a key developmental process through which resources trapped in the photosynthetic organ are degraded in an organized manner and transported away to sustain the growth of other organs including newly forming leaves, roots, seeds, and fruits. The optimal timing of the initiation and progression of senescence are thus prerequisites for controlled plant growth, biomass accumulation, and evolutionary success through seed dispersal. Recent research has uncovered a multitude of regulatory factors including transcription factors, micro-RNAs, protein kinases, and others that constitute the molecular networks that regulate senescence in plants. The timing of senescence is affected by environmental conditions and abiotic or biotic stresses typically trigger a faster senescence. Various phytohormones, including for example ethylene, abscisic acid, and salicylic acid, promote senescence, whereas cytokinins delay it. Recently, several reports have indicated an involvement of auxin in the control of senescence, however, its mode of action and point of interference with senescence control mechanisms remain vaguely defined at present and contrasting observations regarding the effect of auxin on senescence have so far hindered the establishment of a coherent model. Here, we summarize recent studies on auxin-related genes that affect senescence in plants and highlight how these findings might be integrated into current molecular-regulatory models of senescence.}, language = {en} }