@article{SchmidtGertenHintzeetal.2018, author = {Schmidt, Silke Regina and Gerten, Dieter and Hintze, Thomas and Lischeid, Gunnar and Livingstone, David M. and Adrian, Rita}, title = {Temporal and spatial scales of water temperature variability as an indicator for mixing in a polymictic lake}, series = {Inland waters : journal of the International Society of Limnology}, volume = {8}, journal = {Inland waters : journal of the International Society of Limnology}, number = {1}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {2044-2041}, doi = {10.1080/20442041.2018.1429067}, pages = {82 -- 95}, year = {2018}, abstract = {We applied coarse spectral analysis to more than 2 decades of daily near-surface water temperature (WT) measurements from Muggelsee, a shallow polymictic lake in Germany, to systematically characterize patterns in WT variability from daily to yearly temporal scales. Comparison of WT with local air temperature indicates that the WT variability patterns are likely attributable to both meteorological forcing and internal lake dynamics. We identified seasonal patterns of WT variability and showed that WT variability increases with increasing Schmidt stability, decreasing Lake number and decreasing ice cover duration, and is higher near the shore than in open water. We introduced the slope of WT spectra as an indicator for the degree of lake mixing to help explain the identified temporal and spatial scales of WT variability. The explanatory power of this indicator in other lakes with different mixing regimes remains to be established.}, language = {en} } @article{BougeoisDupontNivetdeRafelisetal.2018, author = {Bougeois, Laurie and Dupont-Nivet, Guillaume and de Rafelis, Marc and Tindall, Julia C. and Proust, Jean-Noel and Reichart, Gert-Jan and de Nooijer, Lennart J. and Guo, Zhaojie and Ormukov, Cholponbelk}, title = {Asian monsoons and aridification response to Paleogene sea retreat and Neogene westerly shielding indicated by seasonality in Paratethys oysters}, series = {Earth and planetary science letters}, volume = {485}, journal = {Earth and planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2017.12.036}, pages = {99 -- 110}, year = {2018}, abstract = {Asian climate patterns, characterised by highly seasonal monsoons and continentality, are thought to originate in the Eocene epoch (56 to 34 million years ago - Ma) in response to global climate, Tibetan Plateau uplift and the disappearance of the giant Proto-Paratethys sea formerly extending over Eurasia. The influence of this sea on Asian climate has hitherto not been constrained by proxy records despite being recognised as a major driver by climate models. We report here strongly seasonal records preserved in annual lamina of Eocene oysters from the Proto-Paratethys with sedimentological and numerical data showing that monsoons were not dampened by the sea and that aridification was modulated by westerly moisture sourced from the sea. Hot and arid summers despite the presence of the sea suggest a strong anticyclonic zone at Central Asian latitudes and an orographic effect from the emerging Tibetan Plateau. Westerly moisture precipitating during cold and wetter winters appear to have decreased in two steps. First in response to the late Eocene (34-37 Ma) sea retreat; second by the orogeny of the Tian Shan and Pamir ranges shielding the westerlies after 25 Ma. Paleogene sea retreat and Neogene westerly shielding thus provide two successive mechanisms forcing coeval Asian desertification and biotic crises.}, language = {en} }