@article{KoopmanNataliBettinietal.2018, author = {Koopman, Wouter-Willem Adriaan and Natali, Marco and Bettini, Cristian and Melucci, Manuela and Muccini, Michele and Toffanin, Stefano}, title = {Contact Resistance in Ambipolar Organic Field-Effect Transistors Measured by Confocal Photoluminescence Electro-Modulation Microscopy}, series = {ACS applied materials \& interfaces}, volume = {10}, journal = {ACS applied materials \& interfaces}, number = {41}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.8b05518}, pages = {35411 -- 35419}, year = {2018}, abstract = {Although it is theoretically expected that all organic semiconductors support ambipolar charge transport, most organic transistors either transport holes or electrons effectively. Single-layer ambipolar organic field-effect transistors enable the investigation of different mechanisms in hole and electron transport in a single device since the device architecture provides a controllable planar pn-junction within the transistor channel. However, a direct comparison of the injection barriers and of the channel conductivities between electrons and holes within the same device cannot be measured by standard electrical characterization. This article introduces a novel approach for determining threshold gate voltages for the onset of the ambipolar regime from the position of the pn-junction observed by photoluminescence electromodulation (PLEM) microscopy. Indeed, the threshold gate voltage in the ambipolar bias regime considers a vanishing channel length, thus correlating the contact resistance. PLEM microscopy is a valuable tool to directly compare the contact and channel resistances for both carrier types in the same device. The reported results demonstrate that designing the metal/organic semiconductor interfaces by aligning the bulk metal Fermi levels to the highest occupied molecular orbital or lowest unoccupied molecular orbital levels of the organic semiconductors is a too simplistic approach for optimizing the charge injection process in organic field-effect devices.}, language = {en} }