@article{ReifegersteElinClahsen2018, author = {Reifegerste, Jana and Elin, Kirill and Clahsen, Harald}, title = {Persistent differences between native speakers and late bilinguals}, series = {Bilingualism : language and cognition}, volume = {22}, journal = {Bilingualism : language and cognition}, number = {3}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {1366-7289}, doi = {10.1017/S1366728918000615}, pages = {425 -- 440}, year = {2018}, abstract = {Previous research with younger adults has revealed differences between native (L1) and non-native late-bilingual (L2) speakers with respect to how morphologically complex words are processed. This study examines whether these L1/L2 differences persist into old age. We tested masked-priming effects for derived and inflected word forms in older L1 and L2 speakers of German and compared them to results from younger L1 and L2 speakers on the same experiment (mean ages: 62 vs. 24). We found longer overall response times paired with better accuracy scores for older (L1 and L2) participants than for younger participants. The priming patterns, however, were not affected by chronological age. While both L1 and L2 speakers showed derivational priming, only the L1 speakers demonstrated inflectional priming. We argue that general performance in both L1 and L2 is affected by aging, but that the more profound differences between native and non-native processing persist into old age.}, language = {en} } @article{MalyutinaLaurinavichyuteTerekhinaetal.2018, author = {Malyutina, Svetlana and Laurinavichyute, Anna and Terekhina, Maria and Lapin, Yevgeniy}, title = {No evidence for strategic nature of age-related slowing in sentence processing}, series = {Psychology and aging}, volume = {33}, journal = {Psychology and aging}, number = {7}, publisher = {American Psychological Association}, address = {Washington}, issn = {0882-7974}, doi = {10.1037/pag0000302}, pages = {1045 -- 1059}, year = {2018}, abstract = {Older adults demonstrate a slower speed of linguistic processing, including sentence processing. In nonlinguistic cognitive domains such as memory, research suggests that age-related slowing of processing speed may be a strategy adopted in order to avoid potential error and/or to spare "cognitive resources." So far, very few studies have tested whether older adults' slower processing speed in the linguistic domain has a strategic nature as well. To fill this gap, we tested whether older adults can maintain language processing accuracy when a faster processing speed is enforced externally. Specifically, we compared sentence comprehension accuracy in younger and older adults when sentences were presented at the participant's median self-paced reading speed versus twice as fast. We hypothesized that an external speed increase will cause a smaller accuracy decline in older than younger adults because older adults tend to adopt self-paced processing speeds "further away" from their performance limits. The hypothesis was not confirmed: The decline in accuracy due to faster presentation did not differ by age group. Thus, we found no evidence for strategic nature of age-related slowing of sentence processing. On the basis of our experimental design, we suggest that the age-related slowing of sentence processing is caused not only by motor slowdown, but also by a slowdown in cognitive processing}, language = {en} } @article{GrajaGarciaCarrizoJanketal.2018, author = {Graja, Antonia and Garcia-Carrizo, Francisco and Jank, Anne-Marie and Gohlke, Sabrina and Ambrosi, Thomas H. and Jonas, Wenke and Ussar, Siegfried and Kern, Matthias and Sch{\"u}rmann, Annette and Aleksandrova, Krasimira and Bluher, Matthias and Schulz, Tim Julius}, title = {Loss of periostin occurs in aging adipose tissue of mice and its genetic ablation impairs adipose tissue lipid metabolism}, series = {Aging Cell}, volume = {17}, journal = {Aging Cell}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {1474-9718}, doi = {10.1111/acel.12810}, pages = {13}, year = {2018}, abstract = {Remodeling of the extracellular matrix is a key component of the metabolic adaptations of adipose tissue in response to dietary and physiological challenges. Disruption of its integrity is a well-known aspect of adipose tissue dysfunction, for instance, during aging and obesity. Adipocyte regeneration from a tissue-resident pool of mesenchymal stem cells is part of normal tissue homeostasis. Among the pathophysiological consequences of adipogenic stem cell aging, characteristic changes in the secretory phenotype, which includes matrix-modifying proteins, have been described. Here, we show that the expression of the matricellular protein periostin, a component of the extracellular matrix produced and secreted by adipose tissue-resident interstitial cells, is markedly decreased in aged brown and white adipose tissue depots. Using a mouse model, we demonstrate that the adaptation of adipose tissue to adrenergic stimulation and high-fat diet feeding is impaired in animals with systemic ablation of the gene encoding for periostin. Our data suggest that loss of periostin attenuates lipid metabolism in adipose tissue, thus recapitulating one aspect of age-related metabolic dysfunction. In human white adipose tissue, periostin expression showed an unexpected positive correlation with age of study participants. This correlation, however, was no longer evident after adjusting for BMI or plasma lipid and liver function biomarkers. These findings taken together suggest that age-related alterations of the adipose tissue extracellular matrix may contribute to the development of metabolic disease by negatively affecting nutrient homeostasis.}, language = {en} }