@article{TutuSobolevSteinbergeretal.2018, author = {Tutu, Anthony Osei and Sobolev, Stephan Vladimir and Steinberger, Bernhard and Popov, A. A. and Rogozhina, Irina}, title = {Evaluating the Influence of Plate Boundary Friction and Mantle Viscosity on Plate Velocities}, series = {Geochemistry, geophysics, geosystems}, volume = {19}, journal = {Geochemistry, geophysics, geosystems}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1525-2027}, doi = {10.1002/2017GC007112}, pages = {642 -- 666}, year = {2018}, abstract = {Lithospheric plates move over the low-viscosity asthenosphere balancing several forces, which generate plate motions. We use a global 3-D lithosphere-asthenosphere model (SLIM3D) with visco-elasto-plastic rheology coupled to a spectral model of mantle flow at 300 km depth to quantify the influence of intra-plate friction and asthenospheric viscosity on plate velocities. We account for the brittle-ductile deformation at plate boundaries (yield stress) using a plate boundary friction coefficient to predict the present-day plate motion and net rotation of the lithospheric plates. Previous modeling studies have suggested that small friction coefficients (mu < 0.1, yield stress similar to 100 MPa) can lead to plate tectonics in models of mantle convection. Here we show that in order to match the observed present-day plate motion and net rotation, the frictional parameter must be less than 0.05. We obtain a good fit with the magnitude and orientation of the observed plate velocities (NUVEL-1A) in a no-net-rotation (NNR) reference frame with mu < 0.05 and a minimum asthenosphere viscosity of similar to 5 . 10(19) Pas to 10(20) Pas. Our estimates of net rotation (NR) of the lith-osphere suggest that amplitudes similar to 0.1-0.2 (degrees/Ma), similar to most observation-based estimates, can be obtained with asthenosphere viscosity cutoff values of similar to 10(19) Pas to 5 . 10(19) Pas and friction coefficients mu < 0.05.}, language = {en} }