@article{DarwallBremerichDeWeveretal.2018, author = {Darwall, William and Bremerich, Vanessa and De Wever, Aaike and Dell, Anthony I. and Freyhof, Joerg and Gessner, Mark O. and Grossart, Hans-Peter and Harrison, Ian and Irvine, Ken and J{\"a}hnig, Sonja C. and Jeschke, Jonathan M. and Lee, Jessica J. and Lu, Cai and Lewandowska, Aleksandra M. and Monaghan, Michael T. and Nejstgaard, Jens C. and Patricio, Harmony and Schmidt-Kloiber, Astrid and Stuart, Simon N. and Thieme, Michele and Tockner, Klement and Turak, Eren and Weyl, Olaf}, title = {The alliance for freshwater life}, series = {Aquatic Conservation: Marine and Freshwater Ecosystems}, volume = {28}, journal = {Aquatic Conservation: Marine and Freshwater Ecosystems}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {1052-7613}, doi = {10.1002/aqc.2958}, pages = {1015 -- 1022}, year = {2018}, abstract = {1. Global pressures on freshwater ecosystems are high and rising. Viewed primarily as a resource for humans, current practices of water use have led to catastrophic declines in freshwater species and the degradation of freshwater ecosystems, including their genetic and functional diversity. Approximately three-quarters of the world's inland wetlands have been lost, one-third of the 28 000 freshwater species assessed for the International Union for Conservation of Nature (IUCN) Red List are threatened with extinction, and freshwater vertebrate populations are undergoing declines that are more rapid than those of terrestrial and marine species. This global loss continues unchecked, despite the importance of freshwater ecosystems as a source of clean water, food, livelihoods, recreation, and inspiration. 2. The causes of these declines include hydrological alterations, habitat degradation and loss, overexploitation, invasive species, pollution, and the multiple impacts of climate change. Although there are policy initiatives that aim to protect freshwater life, these are rarely implemented with sufficient conviction and enforcement. Policies that focus on the development and management of fresh waters as a resource for people almost universally neglect the biodiversity that they contain. 3. Here we introduce the Alliance for Freshwater Life, a global initiative, uniting specialists in research, data synthesis, conservation, education and outreach, and policymaking. This expert network aims to provide the critical mass required for the effective representation of freshwater biodiversity at policy meetings, to develop solutions balancing the needs of development and conservation, and to better convey the important role freshwater ecosystems play in human well-being. Through this united effort we hope to reverse this tide of loss and decline in freshwater biodiversity. We introduce several short- and medium-term actions as examples for making positive change, and invite individuals, organizations, authorities, and governments to join the Alliance for Freshwater Life.}, language = {en} } @article{MantzoukiBekliogluBrookesetal.2018, author = {Mantzouki, Evanthia and Beklioglu, Meryem and Brookes, Justin D. and Domis, Lisette Nicole de Senerpont and Dugan, Hilary A. and Doubek, Jonathan P. and Grossart, Hans-Peter and Nejstgaard, Jens C. and Pollard, Amina I. and Ptacnik, Robert and Rose, Kevin C. and Sadro, Steven and Seelen, Laura and Skaff, Nicholas K. and Teubner, Katrin and Weyhenmeyer, Gesa A. and Ibelings, Bastiaan W.}, title = {Snapshot surveys for lake monitoring, more than a shot in the dark}, series = {Frontiers in Ecology and Evolution}, volume = {6}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2018.00201}, pages = {5}, year = {2018}, language = {en} } @article{GoeritzBergerGegeetal.2018, author = {G{\"o}ritz, Anna and Berger, Stella A. and Gege, Peter and Grossart, Hans-Peter and Nejstgaard, Jens C. and Riedel, Sebastian and R{\"o}ttgers, R{\"u}diger and Utschig, Christian}, title = {Retrieval of water constituents from hyperspectral in-situ measurements under variable cloud cover}, series = {Remote sensing / Molecular Diversity Preservation International (MDPI)}, volume = {10}, journal = {Remote sensing / Molecular Diversity Preservation International (MDPI)}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2072-4292}, doi = {10.3390/rs10020181}, pages = {19}, year = {2018}, abstract = {Remote sensing and field spectroscopy of natural waters is typically performed under clear skies, low wind speeds and low solar zenith angles. Such measurements can also be made, in principle, under clouds and mixed skies using airborne or in-situ measurements; however, variable illumination conditions pose a challenge to data analysis. In the present case study, we evaluated the inversion of hyperspectral in-situ measurements for water constituent retrieval acquired under variable cloud cover. First, we studied the retrieval of Chlorophyll-a (Chl-a) concentration and colored dissolved organic matter (CDOM) absorption from in-water irradiance measurements. Then, we evaluated the errors in the retrievals of the concentration of total suspended matter (TSM), Chl-a and the absorption coefficient of CDOM from above-water reflectance measurements due to highly variable reflections at the water surface. In order to approximate cloud reflections, we extended a recent three-component surface reflectance model for cloudless atmospheres by a constant offset and compared different surface reflectance correction procedures. Our findings suggest that in-water irradiance measurements may be used for the analysis of absorbing compounds even under highly variable weather conditions. The extended surface reflectance model proved to contribute to the analysis of above-water reflectance measurements with respect to Chl-a and TSM. Results indicate the potential of this approach for all-weather monitoring.}, language = {en} }