@article{ZhongMiMetwallietal.2018, author = {Zhong, Qi and Mi, Lei and Metwalli, Ezzeldin and Biessmann, Lorenz and Philipp, Martine and Miasnikova, Anna and Laschewsky, Andre and Papadakis, Christine M. and Cubitt, Robert and Schwartzkopf, Matthias and Roth, Stephan V. and Wang, Jiping and M{\"u}ller-Buschbaum, Peter}, title = {Effect of chain architecture on the swelling and thermal response of star-shaped thermo-responsive (poly(methoxy diethylene glycol acrylate)-block-polystyrene)(3) block copolymer films}, series = {Soft matter}, volume = {14}, journal = {Soft matter}, number = {31}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c8sm00965a}, pages = {6582 -- 6594}, year = {2018}, abstract = {The effect of chain architecture on the swelling and thermal response of thin films obtained from an amphiphilic three-arm star-shaped thermo-responsive block copolymer poly(methoxy diethylene glycol acrylate)-block-polystyrene ((PMDEGA-b-PS)(3)) is investigated by in situ neutron reflectivity (NR) measurements. The PMDEGA and PS blocks are micro-phase separated with randomly distributed PS nanodomains. The (PMDEGA-b-PS)(3) films show a transition temperature (TT) at 33 degrees C in white light interferometry. The swelling capability of the (PMDEGA-b-PS)(3) films in a D2O vapor atmosphere is better than that of films from linear PS-b-PMDEGA-b-PS triblock copolymers, which can be attributed to the hydrophilic end groups and limited size of the PS blocks in (PMDEGA-b-PS)(3). However, the swelling kinetics of the as-prepared (PMDEGA-b-PS)(3) films and the response of the swollen film to a temperature change above the TT are significantly slower than that in the PS-b-PMDEGA-b-PS films, which may be related to the conformation restriction by the star-shape. Unlike in the PS-b-PMDEGA-b-PS films, the amount of residual D2O in the collapsed (PMDEGA-b-PS)(3) films depends on the final temperature. It decreases from (9.7 +/- 0.3)\% to (7.0 +/- 0.3)\% or (6.0 +/- 0.3)\% when the final temperatures are set to 35 degrees C, 45 degrees C and 50 degrees C, respectively. This temperature-dependent reduction of embedded D2O originates from the hindrance of chain conformation from the star-shaped chain architecture.}, language = {en} } @article{AravopoulouKyriakosMiasnikovaetal.2018, author = {Aravopoulou, Dionysia and Kyriakos, Konstantinos and Miasnikova, Anna and Laschewsky, Andre and Papadakis, Christine M. and Kyritsis, Apostolos}, title = {Comparative Investigation of the Thermoresponsive Behavior of Two Diblock Copolymers Comprising PNIPAM and PMDEGA Blocks}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {122}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, number = {9}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/acs.jpcb.7b09647}, pages = {2655 -- 2668}, year = {2018}, abstract = {The thermoresponsive behavior of two diblock copolymers PS-b-PNIPAM and PS-b-PMDEGA, which both comprise a hydrophobic polystyrene (PS) block but different thermoresponsive blocks, also differing in length, poly(N-isopropylacrylamide) (PNIPAM) and poly(methoxy diethylene glycol acrylate) (PMDEGA), respectively, was comparatively investigated in a wide temperature range. Concentrated aqueous solutions containing 25 wt \% polymer were studied by small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), and broadband dielectric spectroscopy (BDS). DSC measurements show that, during the demixing phase transition, the hydration number per oligo(ethylene glycol) side chain in the PS-b-PMDEGA solution decreases rather gradually, even up to 20 °C above the onset of the transition, i.e., the cloud point (CP). In contrast, the PS-b-PNIPAM solution exhibits an abrupt, stepwise dehydration behavior at its CP, indicated by the sharp, narrow endothermic peak. BDS measurements suggest that the organization of the expelled water during the phase transition and the subsequent evolution of the micellar aggregates are different for the two copolymers. In the PS-b-PMDEGA solution, the long-range charge transport process changes significantly at its CP and strong interfacial polarization processes appear, probably due to charge accumulation at the interfaces between the micellar aggregates and the aqueous medium. On the contrary, in the PS-b-PNIPAM solution, the phase transition has only a marginal effect on the long-range conduction process and is accompanied by a reduction in the high-frequency (1 MHz) dielectric permittivity, ε′. The latter effect is attributed to the reduced polarization strength of local chain modes due to an enhancement of intra- and interchain hydrogen bonds (HBs) in the polymer-rich phase during the water detaching process. Surprisingly, our BDS measurements indicate that prior to both the demixing and remixing processes the local chain mobility increases temporally. Our dielectric studies suggest that for PS-b-PNIPAM the water detaching process initiates a few degrees below CP and that the local chain mobility and intra- and/or interchain HBs of the PNIPAM blocks may control its thermoresponsive behavior. Dielectric "jump" experiments show that the kinetics of micellar aggregation in the PS-b-PMDEGA solution is slower than that in the PS-b-PNIPAM solution and is independent of the target temperature within the two-phase region. From the experimental point of view, it is shown that the dielectric susceptibility, especially, the dielectric permittivity, ε′, is a well-suited probe for monitoring both the reversible changes in the molecular dipolar bond polarizability and the long-range interfacial polarization at the phase transition.}, language = {en} }