@article{HermanBraunDealetal.2018, author = {Herman, Frederic and Braun, Jean and Deal, Eric and Prasicek, Gunther}, title = {The response time of glacial erosion}, series = {Journal of geophysical research : Earth surface}, volume = {123}, journal = {Journal of geophysical research : Earth surface}, number = {4}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1002/2017JF004586}, pages = {801 -- 817}, year = {2018}, abstract = {There has been recent progress in the understanding of the evolution of Quaternary climate. Simultaneously, there have been improvements in the understanding of glacial erosion processes, with better parameter constraints. Despite this, there remains much debate about whether or not the observed cooling over the Quaternary has driven an increase in glacial erosion rates. Most studies agree that the erosional response to climate change must be transient; therefore, the time scale of the climatic change and the response time of glacial erosion must be accounted for. Here we analyze the equations governing glacial erosion in a steadily uplifting landscape with variable climatic forcing and derive expressions for two fundamental response time scales. The first time scale describes the response of the glacier and the second one the glacial erosion response. We find that glaciers have characteristic time scales of the order of 10 to 10,000 years, while the characteristic time scale for glacial erosion is of the order of a few tens of thousands to a few million years. We then use a numerical model to validate the approximations made to derive the analytical solutions. The solutions show that short period forcing is dampened by the glacier response time, and long period forcing (>1 Myr) may be dampened by erosional response of glaciers when the rock uplift rates are high. In most tectonic and climatic conditions, we expect to see the strongest response of glacial erosion to periodic climatic forcing corresponding to Plio-Pleistocene climatic cycles. Finally, we use the numerical model to predict the response of glacial systems to the observed climatic forcing of the Quaternary, including, but not limited to, the Milankovich periods and the long-term secular cooling trend. We conclude that an increase of glacial erosion in response to Quaternary cooling is physically plausible, and we show that the magnitude of the increase depends on rock uplift and ice accumulation rates.}, language = {en} } @article{DiazDietrichSebagetal.2018, author = {Diaz, Nathalie and Dietrich, Fabienne and Sebag, David and King, Georgina E. and Valla, Pierre G. and Durand, Alain and Garcin, Yannick and de Saulie, Geoffroy and Deschamps, Pierre and Herman, Frederic and Verrecchia, Eric P.}, title = {Pedo-sedimentary constituents as paleoenvironmental proxies in the Sudano-Sahelian belt during the Late Quaternary (southwestern Chad Basin)}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {191}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2018.05.022}, pages = {348 -- 362}, year = {2018}, abstract = {Climate and environmental changes since the Last Glacial Maximum in the tropical zone of West Africa are usually inferred from marine and continental records. In this study, the potential of carbonate pedo-sedimentary geosystems, i.e. Vertisol relics, to record paleoenvironmental changes in the southwestern part of Chad Basin are investigated. A multi-dating approach was applied on different pedogenic organo-mineral constituents. Optically stimulated luminescence (OSL) dating was performed on the soil K-rich feldspars and was combined with radiocarbon dating on both the inorganic (C-14(inorg)) and organic carbon (C-14(org)) soil fractions. Three main pedo-sedimentary processes were assessed over the last 20 ka BP: 1) the soil parent material deposition, from 18 ka to 12 ka BP (OSL), 2) the soil organic matter integration, from 11 cal ka to 8 cal ka BP (C-14(org)), and 3) the pedogenic carbonate nodule precipitation, from 7 cal ka to 5 cal ka BP (C-14(inorg)). These processes correlate well with the Chad Basin stratigraphy and West African records and are shown to be related to significant changes in the soil water balance responding to the evolution of continental hydrology during the Late Quaternary. The last phase affecting the Vertisol relics is the increase of erosion, which is hypothesized to be due to a decrease of the vegetation cover triggered by (i) the onset of drier conditions, possibly strengthened by (ii) anthropogenic pressure. Archaeological data from Far North Cameroon and northern Nigeria, as well as sedimentation times in Lake Tilla (northeastern Nigeria), were used to test these relationships. The increase of erosion is suggested to possibly occur between c. 3 cal ka and 1 cal ka BP. Finally, satellite images revealed similar geosystems all along the Sudano-Sahelian belt, and initial C-14(inorg) ages of the samples collected in four sites gave similar ages to those reported in this study. Consequently, the carbonate pedo-sedimentary geosystems are valuable continental paleoenvironmental archives and soil water balance proxies of the semiarid tropics of West Africa. (C) 2018 Elsevier Ltd. All rights reserved.}, language = {en} } @article{PrasicekHermanRobletal.2018, author = {Prasicek, G{\"u}nther and Herman, Frederic and Robl, J{\"o}rg and Braun, Jean}, title = {Glacial steady state topography controlled by the coupled influence of tectonics and climate}, series = {Journal of geophysical research : Earth surface}, volume = {123}, journal = {Journal of geophysical research : Earth surface}, number = {6}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1029/2017JF004559}, pages = {1344 -- 1362}, year = {2018}, abstract = {Glaciers and rivers are the main agents of mountain erosion. While in the fluvial realm empirical relationships and their mathematical description, such as the stream power law, improved the understanding of fundamental controls on landscape evolution, simple constraints on glacial topography and governing scaling relations are widely lacking. We present a steady state solution for longitudinal profiles along eroding glaciers in a coupled system that includes tectonics and climate. We combined the shallow ice approximation and a glacial erosion rule to calculate ice surface and bed topography from prescribed glacier mass balance gradient and rock uplift rate. Our approach is inspired by the classic application of the stream power law for describing a fluvial steady state but with the striking difference that, in the glacial realm, glacier mass balance is added as an altitude-dependent variable. From our analyses we find that ice surface slope and glacial relief scale with uplift rate with scaling exponents indicating that glacial relief is less sensitive to uplift rate than relief in most fluvial landscapes. Basic scaling relations controlled by either basal sliding or internal deformation follow a power law with the exponent depending on the exponents for the glacial erosion rule and Glen's flow law. In a mixed scenario of sliding and deformation, complicated scaling relations with variable exponents emerge. Furthermore, a cutoff in glacier mass balance or cold ice in high elevations can lead to substantially larger scaling exponents which may provide an explanation for high relief in high latitudes.}, language = {en} }