@article{RizzoLauritaAltenberger2018, author = {Rizzo, Giovanna and Laurita, Salvatore and Altenberger, Uwe}, title = {The Timpa delle Murge ophiolitic gabbros, southern Apennines}, series = {Periodico di Mineralogia}, volume = {87}, journal = {Periodico di Mineralogia}, number = {1}, publisher = {Edizioni nuova cultura}, address = {Roma}, issn = {0369-8963}, doi = {10.2451/2018PM741}, pages = {5 -- 20}, year = {2018}, abstract = {The Timpa delle Murge ophiolite in the North Calabrian Unit is part of the Liguride Complex (southern Apennines). The study is concentrated on the gabbroic part of the ophiolite of the Pollino area. They preserve the high-grade ocean floor metamorphic and locally developed flaser textures under ocean floor conditions. The primary magmatic assemblages are clinopyroxene, plagioclase, and opaques. Brown hornblende is a late magmatic phase. Green hornblende, actinolite, albite, chlorite and epidote display metamorphic recrystallization under lower amphibolite facies conditions, followed by greenschist facies. The gabbros show subalkaline near to alkaline character with a tendency to a more calkalkaline trend. The normalization to primitive mantle and mid-ocean ridge basalt (N-MORB) compositions indicates a considerable depletion in Nb, P, Zr and Ti and an enrichment in Ba, Rb, K, Sr and Eu. This points to a mantle source, which is not compatible with a "normal" mid-ocean ridge situation. Rather, the gabbros are generated from a N-MORB-like melt with a strong crustal component, which was influenced by subduction related fluids and episodic melting during mid-ocean-ridge processes. Plausible geodynamic settings of the Timpa delle Murge gabbros are oceanic back-arc positions with embryonic MORB-activities. Similar slab contaminated magmatism is also known from the early stage of island arc formation in supra-subduction zone environments like the Izu-Bonin-Mariana island arc.}, language = {en} } @article{QuandtTrumbullAltenbergeretal.2018, author = {Quandt, Dennis and Trumbull, Robert B. and Altenberger, Uwe and Cardona, Agustin and Romer, Rolf L. and Bayona, Germ{\´a}n A. and Ducea, Mihai N. and Valencia, Victor and Vasquez, Monica and Cortes, Elizabeth and Guzman, Georgina}, title = {The geochemistry and geochronology of Early Jurassic igneous rocks from the Sierra Nevada de Santa Marta, NW Colombia, and tectono-magmatic implications}, series = {Journal of South American earth sciences}, volume = {86}, journal = {Journal of South American earth sciences}, publisher = {Elsevier}, address = {Oxford}, issn = {0895-9811}, doi = {10.1016/j.jsames.2018.06.019}, pages = {216 -- 230}, year = {2018}, abstract = {The Sierra Nevada de Santa Marta in NW Colombia is an isolated massif at the northernmost end of the Andes chain near the boundary with the Caribbean plate. Previous geologic mapping and K-Ar dating have shown that Jurassic plutonic and volcanic units make up a large part of the Santa Marta Massif (SMM). These rocks have been considered to be part of a Jurassic magmatic arc extending from NW Colombia to northern Chile, but without any geochemical basis for comparison. This paper reports on a geochemical and Sr-Nd-Pb isotope study of the Jurassic rocks in the SMM and provides 12 new U-Pb zircon ages from in-situ laser ICP-MS dating. The plutonic and volcanic units span a range from 45 to 78 wt.\% SiO2, with a dominance of intermediate to felsic compositions with SiO2 > 57 wt.\%. They classify as calc-alkaline, medium to high-K, metaluminous rocks with trace-element features typical for arc-derived magma series. In terms of their major and trace-element compositions, the SMM Jurassic units overlap with contemporary plutonic and volcanic rocks from other regions of the Central and Eastern Cordilleras of Colombia, and confirm an arc affinity. The new U-Pb ages range from 176 +/- 1 Ma to 192 +/- 2 Ma (n = 12), with most between 180 and 188 Ma (n = 7). The initial Sr isotope ratios (at 180 Ma) are between 0.7012 and 0.7071 (n = 29), with 3 outliers attributed to mobilization of Rb and/or Sr, Nearly all samples have negative( )epsilon Nd-(180) values between - 10.3 and 0.0 (n = 30), the two exceptions being only slightly positive (1.1 and 1.9). Measured Pb isotope ratios fall in a narrow range, with Pb-206/Pb-204 from 18.02 to 19.95, (207) Pb/(204) Pb from 15.56 to 15.67 and Pb-208/Pb-204 from 37.76 to 39.04 (n = 28). In the regional context of previous studies, these results confirm early Jurassic ages and an arc affinity for the widespread magmatism exposed in the eastern and northeastern Colombian Andes. We also note patterns in the distribution and composition of magmas. The magmatic activity in the Central Cordillera tends to be younger than in the Eastern Cordillera and is spatially more restricted to the vicinity of regional fault systems. In terms of composition, Jurassic igneous rocks in the Eastern Cordillera have systematically lower epsilon Nd-(180) values than those from the Central Cordillera, whereas the Pb isotope ratios overlap. We ascribe the Nd isotope variations to heterogeneity in the mantle source and/or degree of crustal contamination, whereas the Pb isotope ratios are crust-dominated and similar throughout the region. The spatio-temporal and compositional evolution of Jurassic magmatic rocks in the Northern Andes reflect the major plate kinematic readjustment between the Triassic and the Early Jurassic in the proto-Andean margin.}, language = {en} } @article{ChemamHadjzobirDaifetal.2018, author = {Chemam, Asma and Hadjzobir, Soraya and Daif, Menana and Altenberger, Uwe and G{\"u}nter, Christina}, title = {Provenance analyses of the heavy-mineral beach sands of the Annaba coast, northeast Algeria, and their consequences for the evaluation of fossil placer deposit}, series = {Journal of earth system science}, volume = {127}, journal = {Journal of earth system science}, number = {8}, publisher = {Indian Academy of Science}, address = {Bangalore}, issn = {0253-4126}, doi = {10.1007/s12040-018-1019-z}, pages = {25}, year = {2018}, abstract = {The paper presents the first study of heavy-mineral sand beaches from the Mediterranean coast of Annaba/Algeria. The studied beaches run along the basement outcrops of the Edough massif, which are mainly composed by micaschists, tourmaline-rich quartzo-feldspathic veins, gneisses, skarns and marbles. Sand samples were taken from three localities (Ain Achir, Plage-Militaire and El Nasr). The heavy-mineral fraction comprises between 74 and 91 vol\%. The garnets of the beaches are almandine rich and tourmalines vary with respect to their location from schorl to dravite. Tourmaline at Ain Achir and the Plage-Militaire is schorlits, while at El Nasr beach dravite is ubiquitous. The World Shale Average normalised REE of the sands and the basement outcrops reveal: (i) Ain Achir beach: REE pattern of sand and the coastal rocks from the studied beaches reflects a multiple sources; (ii) Plage-Militaire: the sand and the coastal outcrops show similar LREE and a strong enrichment in HREE, suggesting the presence HREE-rich phases found as inclusions in staurolite; (iii) El Nasr: two types of sand patterns are found: one with flat REE pattern similar to the proximal rocks and other one enriched in HREE suggesting a mixed source.}, language = {en} } @article{HoehnelReimoldAltenbergeretal.2018, author = {Hoehnel, Desir{\´e}e and Reimold, Wolf Uwe and Altenberger, Uwe and Hofmann, Axel and Mohr-Westheide, Tanja and Oezdemir, Seda and K{\"o}berl, Christian}, title = {Petrographic and Micro-XRF analysis of multiple archean impact-derived spherule layers in drill core CT3 from the northern Barberton Greenstone Belt (South Africa)}, series = {Journal of African earth sciences / Geological Society of Africa}, volume = {138}, journal = {Journal of African earth sciences / Geological Society of Africa}, publisher = {Elsevier Science}, address = {Oxford}, issn = {1464-343X}, doi = {10.1016/j.jafrearsci.2017.11.020}, pages = {264 -- 288}, year = {2018}, abstract = {The Archean spherule layers (SLs) of the Barberton Greenstone Belt (BGB, South Africa) and Pilbara Craton (Australia) are the only known evidence of early, large impact events on Earth. Spherules in these layers have been, alternatively, interpreted as molten impact ejecta, condensation products from an impact vapor cloud, or ejecta from impact craters melted during atmospheric re-entry. Recently, a new exploration drill core (CT3) from the northern BGB revealed 17 SL intersections. Spherules are densely packed, sand-sized, and variably rounded or deformed. The CT3 SLs are intercalated with black and brown shale, and laminated chert. The determination of the original number of impact events that are represented by these multiple SLs is central to the present paper. A comprehensive study of the sedimentary and petrographic characteristics of these SLs involved the determination of the size, shape and types of individual spherules, as well as their mineralogy. CT3 SLs consist of K-feldspar, phyllosilicate, siderite, dolomite, quartz, Ti- and Fe-oxides, as well as apatite. In addition, small amounts of carbonaceous, presumably organic material are observed in several spherules at 145 and 149 m depth. Only Ni-rich Cr-spinel (up to 11 wt\% NiO) crystals, rare zircon grains, and alloys of platinum group elements ± Fe or Ni represent primary phases in these thoroughly altered strata. The 0.3 to 2.6-mm-sized spherules can be classified into four types: 1. Spherules crystallized completely with secondary K-feldspar (subtype 1A) or phyllosilicate (subtype 1B); spherules completely filled with Ti- and Fe-oxides (subtype 1C); spherules containing disordered or radially oriented, fibrous and lath-shaped K-feldspar textures (subtype 1D); or subtype 1B spherules that contain significant Cr-spinel (subtype 1E); 2. zoned compositions with these types 1A and/or 1B minerals (subtype 2A); spherules that contain central or marginal vesicles (subtype 2B); subtype 1B spherules whose rims consist of Ti and Fe-oxides (subtype 2C); 3. deformed spherules (subtype 3A) - of all types; (B) subtype 1B spherules are assimilated into groundmass; (C) open spherules or spherules with collapsed rims; and 4. interconnected spherules of type 1A. A few spherules show botryoidal devitrification textures interpreted to result from rapid cooling/devitrification of former melt droplets. SL 15 at a depth of 145 m is unique in being the only grain-size sorted SL; this bed may have been deposited by fallout through a water column. The SL and their host rocks can be easily distinguished by their significant differences in micro-XRF elemental distribution maps. Depending on which aspects of the SLs are primarily considered (such as similar geochemistry, similar layering, SL occurrences abundant at three different depth intervals), the 17 CT3 SLs can be assigned to three or up to 13 individual impact events. Uncertainty about the actual number of impact events represented remains, however, due to the complex folding deformation observed throughout the drill core.}, language = {en} }