@article{YamazakiStolleMatzkaetal.2018, author = {Yamazaki, Yosuke and Stolle, Claudia and Matzka, J{\"u}rgen and Alken, Patrick}, title = {Quasi-6-Day Wave Modulation of the Equatorial Electrojet}, series = {Journal of geophysical research : Space physics}, volume = {123}, journal = {Journal of geophysical research : Space physics}, number = {5}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9380}, doi = {10.1029/2018JA025365}, pages = {4094 -- 4109}, year = {2018}, abstract = {The equatorial electrojet is an enhanced eastward current in the dayside E region ionosphere flowing along the magnetic equator. The equatorial electrojet is highly variable as it is subject to various forcing mechanisms including atmospheric waves from the lower layers of the atmosphere. There are occasionally times when the intensity of the equatorial electrojet at a fixed longitude shows an oscillatory variation with a period of approximately 6days. We present case studies of such events based on the equatorial electrojet measurements from the CHAMP and Swarm satellites. The spatial and temporal variability of the equatorial electrojet intensity during these events reveals characteristics of a westward propagating wave with zonal wavenumber 1, consistent with the effect of the quasi-6-day planetary wave. Analyses of the geopotential height data from the Aura satellite confirm the presence of the quasi-6-day planetary wave in the lower thermosphere during the events. The amplitude of the quasi-6-day variation in the equatorial electrojet intensity depends on longitude, but no systematic longitudinal dependence is found for different events. During the event of August 2010, quasi-6-day variations are also observed by ground-based magnetometers and a radar in the Peruvian sector. The effect of the quasi-6-day wave accounts for up to +/- 5.9m/s in the equatorial vertical plasma velocity at noon, which is much larger than previously predicted by a numerical model. These results suggest that the quasi-6-day planetary wave is an important source of short-term variability in the equatorial ionosphere.}, language = {en} } @article{SoaresYamazakiMatzkaetal.2018, author = {Soares, Gabriel and Yamazaki, Yosuke and Matzka, J{\"u}rgen and Pinheiro, Katia and Morschhauser, Achim and Stolle, Claudia and Alken, Patrick}, title = {Equatorial counter electrojet longitudinal and seasonal variablity in the American sector}, series = {Journal of geophysical research : Space physics}, volume = {123}, journal = {Journal of geophysical research : Space physics}, number = {11}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9380}, doi = {10.1029/2018JA025968}, pages = {9906 -- 9920}, year = {2018}, abstract = {The equatorial electrojet occasionally reverses during morning and afternoon hours, leading to periods of westward current in the ionospheric E region that are known as counter electrojet (CEJ) events. We present the first analysis of CEJ climatology and CEJ dependence on solar flux and lunar phase for the Brazilian sector, based on an extensive ground-based data set for the years 2008 to 2017 from the geomagnetic observatory Tatuoca (1.2 degrees S, 48.5 degrees W), and we compare it to the results found for Huancayo (12.0 degrees S, 75.3 degrees W) observatory in the Peruvian sector. We found a predominance of morning CEJ events for both sectors. The afternoon CEJ occurrence rate in the Brazilian sector is twice as high as in the Peruvian sector. The afternoon CEJ occurrence rate strongly depends on season, with maximum rates occurring during the northern-hemisphere summer for the Brazilian sector and during the northern-hemisphere winter for the Peruvian sector. Significant discrepancies between the two sectors are also found for morning CEJ rates during the northern-hemisphere summer. These longitudinal differences are in agreement with a CEJ climatology derived from contemporary Swarm satellite data and can be attributed in part to the well-known longitudinal wave-4 structure in the background equatorial electrojet strength that results from nonmigrating solar tides and stationary planetary waves. Simulations with the Thermosphere-Ionosphere-Electrodynamics General Circulation Model show that the remaining longitudinal variability in CEJ during northern summer can be explained by the effect of migrating tides in the presence of the varying geomagnetic field in the South Atlantic Anomaly.}, language = {en} }