@article{ZhangChenZhouetal.2015, author = {Zhang, Yanqiu and Chen, Daizhao and Zhou, Xiqiang and Guo, Zenghui and Wei, Wenwen and Mutti, Maria}, title = {Depositional facies and stratal cyclicity of dolomites in the Lower Qiulitag Group (Upper Cambrian) in northwestern Tarim Basin, NW China}, series = {Facies : an international journal of palaeontology, sedimentology, geology}, volume = {61}, journal = {Facies : an international journal of palaeontology, sedimentology, geology}, number = {1}, publisher = {Springer}, address = {New York}, issn = {0172-9179}, doi = {10.1007/s10347-014-0417-1}, pages = {24}, year = {2015}, abstract = {The Upper Cambrian Lower Qiulitag Group in the Tarim Basin, NW China, is overwhelmingly composed of cyclic dolomites. Based on extensive field investigations and facies analysis from four outcrop sections in the Bachu-Keping area, northwestern Tarim Basin, four main types of facies are recognized: open-marine subtidal, restricted shallow subtidal, intertidal, and supratidal facies, and these are further subdivided into ten lithofacies. In general, these facies are vertically arranged into shallowing-upward, metre-scale cycles. These cycles are commonly composed of a thin basal horizon reflecting abrupt deepening, and a thicker upper succession showing gradual shallowing upwards. Based on the vertical facies arrangements and changes across boundary surfaces, two types of cycle: peritidal and shallow subtidal cycle, are further identified. The peritidal cycles, predominating over the lower-middle Lower Qiulitag Group, commence with shallow subtidal to lower intertidal facies and are capped by inter-supratidal facies. In contrast, the shallow subtidal cycles, dominating the upper Lower Qiulitag Group, are capped by shallow-subtidal facies. Based on vertical lithofacies variations, cycle stacking patterns, and accommodation variations revealed by Fischer plots, six larger-scale third-order depositional sequences (Sq1-Sq6) are recognized. These sequences generally consist of a lower transgressive and an upper regressive systems tract. The transgressive tracts are dominated by thicker-than-average cycles, indicating an overall accommodation increase, whereas the regressive tracts are characterized by thinner-than-average peritidal cycles, indicating an overall accommodation decrease. The sequence boundaries are characterized by transitional zones of stacked thinner-than-average cycles, rather than by a single surface. These sequences can further be grouped into lower-order sequence sets: the lower and upper sequence sets. The lower sequence set, including Sq1-Sq3, is characterized by peritidal facies-dominated sequences and a progressive decrease in accommodation space, indicating a longer-term fall in sea level. In contrast, the upper sequence set (Sq4-Sq6) is characterized by subtidal facies-dominated sequences and a progressive increase in accommodation space, indicating a longer-term rise in sea level.}, language = {en} } @article{FrijiaParenteDiLuciaetal.2015, author = {Frijia, Gianluca and Parente, Mariano and Di Lucia, Matteo and Mutti, Maria}, title = {Carbon and strontium isotope stratigraphy of the Upper Cretaceous (Cenomanian-Campanian) shallow-water carbonates of southern Italy: Chronostratigraphic calibration of larger foraminifera biostratigraphy}, series = {Cretaceous research}, volume = {53}, journal = {Cretaceous research}, publisher = {Elsevier}, address = {London}, issn = {0195-6671}, doi = {10.1016/j.cretres.2014.11.002}, pages = {110 -- 139}, year = {2015}, abstract = {Shallow-water carbonates are invaluable archives of past global change. They hold the record of how neritic biologic communities reacted to palaeoenvironmental changes. However, attempts to decipher these geological archives are often severely hampered by the low stratigraphic resolution attained by biostratigraphy. This is particularly the case for the Upper Cretaceous carbonate platforms of the central Tethyan realm: their biostratigraphy suffers from very low resolution and poor correlation with the standard biochronologic scales based on ammonites, planktic foraminifers and calcareous nannoplankton. In this paper we show how this problem can be tackled by integrating biostratigraphy with isotope stratigraphy. We present a detailed record of the benthic foraminiferal biostratigraphy and carbon and strontium isotope stratigraphy of three upper Cenomanian-middle Campanian sections belonging to the Apennine Carbonate Platform of southern Italy. For the upper Cenomanian-Turonian interval, the carbon isotope curves of the studied sections are easily correlated to the reference curve of the English Chalk. The correlation is facilitated by the matching of the prominent positive excursion corresponding to the Oceanic Anoxic Event 2. For the Coniacian-middle Campanian interval, the correlation is mainly based on strontium isotope stratigraphy. We use the Sr-87/Sr-86 ratios of the low-Mg calcite of well preserved rudist shells to obtain accurate chronostratigraphic ages for many levels of the three studied sections. The ages obtained by Sr isotope stratigraphy are then used to better constrain the matching of the carbon isotope curves. From the high-resolution chronostratigraphic age-model stablished by isotope stratigraphy, we derive the chronostratigraphic calibration of benthic foraminiferal biostratigraphic events. For the first time the benthic foraminiferal biozones of the Apennine Carbonate Platform can be accurately correlated to the standard ammonite biozonation. This result is of great relevance because the biostratigraphic schemes of other carbonate platforms in the central and southern Tethyan realm are largely based on the same biostratigraphic events. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} }