@article{HainichRuehlingTodtetal.2014, author = {Hainich, Rainer and Ruehling, Ute and Todt, Helge Tobias and Oskinova, Lida and Liermann, A. and Graefener, G. and Foellmi, C. and Schnurr, O. and Hamann, Wolf-Rainer}, title = {The Wolf-Rayet stars in the Large Magellanic Cloud - A comprehensive analysis of the WN class}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {565}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201322696}, pages = {62}, year = {2014}, abstract = {Context. Massive stars, although being important building blocks of galaxies, are still not fully understood. This especially holds true for Wolf-Rayet (WR) stars with their strong mass loss, whose spectral analysis requires adequate model atmospheres. Aims. Following our comprehensive studies of the WR stars in the Milky Way, we now present spectroscopic analyses of almost all known WN stars in the LMC. Methods. For the quantitative analysis of the wind-dominated emission-line spectra, we employ the Potsdam Wolf-Rayet (PoWR) model atmosphere code. By fitting synthetic spectra to the observed spectral energy distribution and the available spectra (ultraviolet and optical), we obtain the physical properties of 107 stars. Results. We present the fundamental stellar and wind parameters for an almost complete sample of WN stars in the LMC. Among those stars that are putatively single, two different groups can be clearly distinguished. While 12\% of our sample are more luminous than 10(6) L-circle dot and contain a significant amount of hydrogen, 88\% of the WN stars, with little or no hydrogen, populate the luminosity range between log (L/L-circle dot) = 5.3 ... 5.8. Conclusions. While the few extremely luminous stars (log (L/L-circle dot) > 6), if indeed single stars, descended directly from the main sequence at very high initial masses, the bulk of WN stars have gone through the red-supergiant phase. According to their luminosities in the range of log (L/L-circle dot) = 5.3 ... 5.8, these stars originate from initial masses between 20 and 40 M-circle dot. This mass range is similar to the one found in the Galaxy, i.e. the expected metallicity dependence of the evolution is not seen. Current stellar evolution tracks, even when accounting for rotationally induced mixing, still partly fail to reproduce the observed ranges of luminosities and initial masses. Moreover, stellar radii are generally larger and effective temperatures correspondingly lower than predicted from stellar evolution models, probably due to subphotospheric inflation.}, language = {en} } @article{LiermannHamannOskinova2012, author = {Liermann, A. and Hamann, Wolf-Rainer and Oskinova, Lida}, title = {The Quintuplet cluster III. Hertzsprung-Russell diagram and cluster age}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {540}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201117534}, pages = {9}, year = {2012}, abstract = {The Quintuplet, one of three massive stellar clusters in the Galactic center (GC), is located about 30 pc in projection from Sagittarius A*. We aim at the construction of the Hertzsprung-Russell diagram (HRD) of the cluster to study its evolution and to constrain its star-formation history. For this purpose we use the most complete spectral catalog of the Quintuplet stars. Based on the K-band spectra we determine stellar temperatures and luminosities for all stars in the catalog under the assumption of a uniform reddening towards the cluster. We find two groups in the resulting HRD: early-type OB stars and late-type KM stars, well separated from each other. By comparison with Geneva stellar evolution models we derive initial masses exceeding 8 M-circle dot for the OB stars. In the HRD these stars are located along an isochrone corresponding to an age of about 4 Myr. This confirms previous considerations, where a similar age estimate was based on the presence of evolved Wolf-Rayet stars in the cluster. We derive number ratios for the various spectral subtype groups (e.g. N-WR/N-O, N-WC/N-WN) and compare them with predictions of population synthesis models. We find that an instantaneous burst of star formation at about 3.3 to 3.6 Myr ago is the most likely scenario to form the Quintuplet cluster. Furthermore, we apply a mass-luminosity relation to construct the initial mass function (IMF) of the cluster. We find indications for a slightly top-heavy IMF. The late-type stars in the LHO catalog are red giant branch (RGB) stars or red supergiants (RSGs) according to their spectral signatures. Under the assumption that they are located at about the distance of the Galactic center we can derive their luminosities. The comparison with stellar evolution models reveals that the initial masses of these stars are lower than 15 M-circle dot implying that they needed about 15 Myr (RSG) or even more than 30 Myr (RGB) to evolve into their present stage. It might be suspected that these late-type stars do not physically belong to the Quintuplet cluster. Indeed, most of them disqualify as cluster members because their radial velocities differ too much from the cluster average. Nevertheless, five of the brightest RGB/RSG stars from the LHO catalog share the mean radial velocity of the Quintuplet, and thus remain highly suspect for being gravitationally bound members. If so, this would challenge the cluster formation and evolution scenario.}, language = {en} } @article{HamannGraefenerLiermannetal.2019, author = {Hamann, Wolf-Rainer and Gr{\"a}fener, G. and Liermann, A. and Hainich, Rainer and Sander, Andreas Alexander Christoph and Shenar, Tomer and Ramachandran, Varsha and Todt, Helge Tobias and Oskinova, Lida}, title = {The Galactic WN stars revisited}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {625}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201834850}, pages = {11}, year = {2019}, abstract = {Comprehensive spectral analyses of the Galactic Wolf-Rayet stars of the nitrogen sequence (i.e. the WN subclass) have been performed in a previous paper. However, the distances of these objects were poorly known. Distances have a direct impact on the "absolute" parameters, such as luminosities and mass-loss rates. The recent Gaia Data Release (DR2) of trigonometric parallaxes includes nearly all WN stars of our Galactic sample. In the present paper, we apply the new distances to the previously analyzed Galactic WN stars and rescale the results accordingly. On this basis, we present a revised catalog of 55 Galactic WN stars with their stellar and wind parameters. The correlations between mass-loss rate and luminosity show a large scatter, for the hydrogen-free WN stars as well as for those with detectable hydrogen. The slopes of the log L - log M correlations are shallower than found previously. The empirical Hertzsprung-Russell diagram (HRD) still shows the previously established dichotomy between the hydrogen-free early WN subtypes that are located on the hot side of the zero-age main sequence (ZAMS), and the late WN subtypes, which show hydrogen and reside mostly at cooler temperatures than the ZAMS (with few exceptions). However, with the new distances, the distribution of stellar luminosities became more continuous than obtained previously. The hydrogen-showing stars of late WN subtype are still found to be typically more luminous than the hydrogen-free early subtypes, but there is a range of luminosities where both subclasses overlap. The empirical HRD of the Galactic single WN stars is compared with recent evolutionary tracks. Neither these single-star evolutionary models nor binary scenarios can provide a fully satisfactory explanation for the parameters of these objects and their location in the HRD.}, language = {en} } @article{HamannGraefenerLiermann2006, author = {Hamann, Wolf-Rainer and Graefener, G. and Liermann, A.}, title = {The galactic WN stars - Spectral analyses with line-blanketed model atmospheres versus stellar evolution models with and without rotation}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {457}, journal = {Astronomy and astrophysics : an international weekly journal}, number = {3}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361:20065052}, pages = {1015 -- 1031}, year = {2006}, abstract = {Context. Very massive stars pass through the Wolf-Rayet (WR) stage before they finally explode. Details of their evolution have not yet been safely established, and their physics are not well understood. Their spectral analysis requires adequate model atmospheres, which have been developed step by step during the past decades and account in their recent version for line blanketing by the millions of lines from iron and iron-group elements. However, only very few WN stars have been re-analyzed by means of line-blanketed models yet. Aims. The quantitative spectral analysis of a large sample of Galactic WN stars with the most advanced generation of model atmospheres should provide an empirical basis for various studies about the origin, evolution, and physics of the Wolf-Rayet stars and their powerful winds. Methods. We analyze a large sample of Galactic WN stars by means of the Potsdam Wolf-Rayet (PoWR) model atmospheres, which account for iron line blanketing and clumping. The results are compared with a synthetic population, generated from the Geneva tracks for massive star evolution. Results. We obtain a homogeneous set of stellar and atmospheric parameters for the GalacticWN stars, partly revising earlier results. Conclusions. Comparing the results of our spectral analyses of the Galactic WN stars with the predictions of the Geneva evolutionary calculations, we conclude that there is rough qualitative agreement. However, the quantitative discrepancies are still severe, and there is no preference for the tracks that account for the effects of rotation. It seems that the evolution of massive stars is still not satisfactorily understood.}, language = {en} } @article{Liermann2015, author = {Liermann, A.}, title = {Evolution of Wolf-Rayet spectra}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87830}, pages = {129 -- 132}, year = {2015}, abstract = {Wolf-Rayet stars are important sources for the enrichment of the ISM with nuclear processed elements, UV photons and momentum. They are descendants of high-mass stars for which short lifetimes and transition times can hamper the spectral classification of the stars in their different evolutionary phases. The expanded stellar atmospheres of Wolf-Rayet stars can show spectra which seem inconsistent with the anticipated underlying evolution phase, for example in late hydrogen-burning WN stars and Of/WN transition stars. We present a sequence of synthetic spectra of the Potsdam Wolf-Rayet models based on the latest Geneva stellar evolution models. This will visualize the changes in stellar spectra over a full stellar lifetime. Direct comparison with observed stellar spectra, as well as the evolution of diagnostic line ratios will improve the connection of spectral classification and evolution phase.}, language = {en} } @article{SteinkeOskinovaHamannetal.2016, author = {Steinke, Martin and Oskinova, Lida and Hamann, Wolf-Rainer and Sander, Andreas Alexander Christoph and Liermann, A. and Todt, Helge Tobias}, title = {Analysis of the WN star WR102c, its WR nebula, and the associated cluster of massive stars in the Sickle Nebula}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {588}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201527692}, pages = {10}, year = {2016}, abstract = {Context. The massive Wolf-Rayet type star WR102c is located near the Quintuplet Cluster, one of the three massive star clusters in the Galactic centre region. Previous studies indicated that WR102c may have a dusty circumstellar nebula and is among the main ionising sources of the Sickle Nebula associated with the Quintuplet Cluster. Aims. The goals of our study are to derive the stellar parameters of WR102c from the analysis of its spectrum and to investigate its stellar and nebular environment. Methods. We obtained observations with the ESO VLT integral field spectrograph SINFONI in the K-band, extracted the stellar spectra, and analysed them by means of stellar atmosphere models. Results. Our new analysis supersedes the results previously reported for WR102c. We significantly decrease its bolometric luminosity and hydrogen content. We detect four early OB type stars close to WR102c. These stars have radial velocities similar to that of WR102c. We suggest that together with WR102c these stars belong to a distinct star cluster with a total mass of similar to 1000 M-circle dot. We identify a new WR nebula around WR102c in the SINFONI map of the di ff use Br gamma emission and in the HST Pa ff images. The Br gamma line at di ff erent locations is not significantly broadened and similar to the width of nebular emission elsewhere in the H i i region around WR102c. Conclusions. The massive star WR102c located in the Galactic centre region resides in a star cluster containing additional early-type stars. The stellar parameters of WR102c are typical for hydrogen-free WN6 stars. We identify a nebula surrounding WR102c that has a morphology similar to other nebulae around hydrogen-free WR stars, and propose that the formation of this nebula is linked to interaction of the fast stellar wind with the matter ejected at a previous evolutionary stage of WR102c.}, language = {en} }