@misc{WagnerHillebrandWackeretal.2013, author = {Wagner, Nicole D. and Hillebrand, Helmut and Wacker, Alexander and Frost, Paul C.}, title = {Nutritional indicators and their uses in ecology}, series = {Ecology letters}, volume = {16}, journal = {Ecology letters}, number = {4}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1461-023X}, doi = {10.1111/ele.12067}, pages = {535 -- 544}, year = {2013}, abstract = {The nutrition of animal consumers is an important regulator of ecological processes due to its effects on their physiology, life-history and behaviour. Understanding the ecological effects of poor nutrition depends on correctly diagnosing the nature and strength of nutritional limitation. Despite the need to assess nutritional limitation, current approaches to delineating nutritional constraints can be non-specific and imprecise. Here, we consider the need and potential to develop new complementary approaches to the study of nutritional constraints on animal consumers by studying and using a suite of established and emerging biochemical and molecular responses. These nutritional indicators include gene expression, transcript regulators, protein profiling and activity, and gross biochemical and elemental composition. The potential applications of nutritional indicators to ecological studies are highlighted to demonstrate the value that this approach would have to future studies in community and ecosystem ecology.}, language = {en} } @article{BrothersHiltAttermeyeretal.2013, author = {Brothers, Soren M. and Hilt, Sabine and Attermeyer, Katrin and Grossart, Hans-Peter and Kosten, Sarian and Lischke, Betty and Mehner, Thomas and Meyer, Nils and Scharnweber, Inga Kristin and K{\"o}hler, Jan}, title = {A regime shift from macrophyte to phytoplankton dominance enhances carbon burial in a shallow, eutrophic lake}, series = {Ecosphere : the magazine of the International Ecology University}, volume = {4}, journal = {Ecosphere : the magazine of the International Ecology University}, number = {11}, publisher = {Wiley}, address = {Washington}, issn = {2150-8925}, doi = {10.1890/ES13-00247.1}, pages = {17}, year = {2013}, abstract = {Ecological regime shifts and carbon cycling in aquatic systems have both been subject to increasing attention in recent years, yet the direct connection between these topics has remained poorly understood. A four-fold increase in sedimentation rates was observed within the past 50 years in a shallow eutrophic lake with no surface in-or outflows. This change coincided with an ecological regime shift involving the complete loss of submerged macrophytes, leading to a more turbid, phytoplankton-dominated state. To determine whether the increase in carbon (C) burial resulted from a comprehensive transformation of C cycling pathways in parallel to this regime shift, we compared the annual C balances (mass balance and ecosystem budget) of this turbid lake to a similar nearby lake with submerged macrophytes, a higher transparency, and similar nutrient concentrations. C balances indicated that roughly 80\% of the C input was permanently buried in the turbid lake sediments, compared to 40\% in the clearer macrophyte-dominated lake. This was due to a higher measured C burial efficiency in the turbid lake, which could be explained by lower benthic C mineralization rates. These lower mineralization rates were associated with a decrease in benthic oxygen availability coinciding with the loss of submerged macrophytes. In contrast to previous assumptions that a regime shift to phytoplankton dominance decreases lake heterotrophy by boosting whole-lake primary production, our results suggest that an equivalent net metabolic shift may also result from lower C mineralization rates in a shallow, turbid lake. The widespread occurrence of such shifts may thus fundamentally alter the role of shallow lakes in the global C cycle, away from channeling terrestrial C to the atmosphere and towards burying an increasing amount of C.}, language = {en} }