@phdthesis{Murawski2017, author = {Murawski, Aline}, title = {Trends in precipitation over Germany and the Rhine basin related to changes in weather patterns}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-412725}, school = {Universit{\"a}t Potsdam}, pages = {112}, year = {2017}, abstract = {Niederschlag als eine der wichtigsten meteorologischen Gr{\"o}ßen f{\"u}r Landwirtschaft, Wasserversorgung und menschliches Wohlbefinden hat schon immer erh{\"o}hte Aufmerksamkeit erfahren. Niederschlagsmangel kann verheerende Auswirkungen haben, wie z.B. Missernten und Wasserknappheit. {\"U}berm{\"a}ßige Niederschl{\"a}ge andererseits bergen jedoch ebenfalls Gefahren in Form von Hochwasser oder Sturzfluten und wiederum Missernten. Daher wurde viel Arbeit in die Detektion von Niederschlags{\"a}nderungen und deren zugrundeliegende Prozesse gesteckt. Insbesondere angesichts von Klimawandel und unter Ber{\"u}cksichtigung des Zusammenhangs zwischen Temperatur und atmosph{\"a}rischer Wasserhaltekapazit{\"a}t, ist großer Bedarf an Forschung zum Verst{\"a}ndnis der Auswirkungen von Klimawandel auf Niederschlags{\"a}nderungen gegeben. Die vorliegende Arbeit hat das Ziel, vergangene Ver{\"a}nderungen in Niederschlag und anderen meteorologischen Variablen zu verstehen. F{\"u}r verschiedene Zeitr{\"a}ume wurden Tendenzen gefunden und mit entsprechenden Ver{\"a}nderungen in der großskaligen atmosph{\"a}rischen Zirkulation in Zusammenhang gebracht. Die Ergebnisse dieser Arbeit k{\"o}nnen als Grundlage f{\"u}r die Attributierung von Hochwasserver{\"a}nderungen zu Klimawandel genutzt werden. Die Annahmen f{\"u}r die Maßstabsverkleinerung („Downscaling") der Daten von großskaligen Zirkulationsmodellen auf die lokale Skala wurden hier getestet und verifziert. In einem ersten Schritt wurden Niederschlagsver{\"a}nderungen in Deutschland analysiert. Dabei lag der Fokus nicht nur auf Niederschlagssummen, sondern auch auf Eigenschaften der statistischen Verteilung, {\"U}bergangswahrscheinlichkeiten als Maß f{\"u}r Trocken- und Niederschlagsperioden und Extremniederschlagsereignissen. Den r{\"a}umlichen Fokus auf das Rheineinzugsgebiet, das gr{\"o}ßte Flusseinzugsgebiet Deutschlands und einer der Hauptwasserwege Europas, verlagernd, wurden nachgewiesene Ver{\"a}nderungen in Niederschlag und anderen meteorologischen Gr{\"o}ßen in Bezug zu einer „optimierten" Wetterlagenklassifikation analysiert. Die Wetterlagenklassifikation wurde unter der Maßgabe entwickelt, die Varianz des lokalen Klimas bestm{\"o}glich zu erkl{\"a}ren. Die letzte hier behandelte Frage dreht sich darum, ob die beobachteten Ver{\"a}nderungen im lokalen Klima eher H{\"a}ufigkeits{\"a}nderungen der Wetterlagen zuzuordnen sind oder einer Ver{\"a}nderung der Wetterlagen selbst. Eine gebr{\"a}uchliche Annahme f{\"u}r einen Downscaling-Ansatz mit Hilfe von Wetterlagen und einem stochastischen Wettergenerator ist, dass Klimawandel sich allein durch eine Ver{\"a}nderung der H{\"a}ufigkeit von Wetterlagen ausdr{\"u}ckt, die Eigenschaften der Wetterlagen dabei jedoch konstant bleiben. Diese Annahme wurde {\"u}berpr{\"u}ft und die F{\"a}higkeit der neuesten Generation von Zirkulationsmodellen, diese Wetterlagen zu reproduzieren, getestet. Niederschlagsver{\"a}nderungen in Deutschland im Zeitraum 1951-2006 lassen sich zusammenfassen als negativ im Sommer und positiv in allen anderen Jahreszeiten. Verschiedene Niederschlagscharakteristika best{\"a}tigen die Tendenz in den Niederschlagssummen: w{\"a}hrend mittlere und extreme Niederschlagstageswerte im Winter zugenommen haben, sind auch zusammenh{\"a}ngende Niederschlagsperioden l{\"a}nger geworden (ausgedr{\"u}ckt als eine gestiegene Wahrscheinlichkeit f{\"u}r einen Tag mit Niederschlag gefolgt von einem weiteren nassen Tag). Im Sommer wurde das Gegenteil beobachtet: gesunkene Niederschlagssummen, untermauert von verringerten Mittel- und Extremwerten und l{\"a}ngeren Trockenperioden. Abseits dieser allgemeinen Zusammenfassung f{\"u}r das gesamte Gebiet Deutschlands, ist die r{\"a}umliche Verteilung von Niederschlagsver{\"a}nderungen deutlich heterogener. Vermehrter Niederschlag im Winter wurde haupts{\"a}chlich im Nordwesten und S{\"u}dosten Deutschlands beobachtet, w{\"a}hrend im Fr{\"u}hling die st{\"a}rksten Ver{\"a}nderungen im Westen und im Herbst im S{\"u}den aufgetreten sind. Das saisonale Bild wiederum l{\"o}st sich f{\"u}r die zugeh{\"o}rigen Monate auf, z.B. setzt sich der Anstieg im Herbstniederschlag aus deutlich vermehrtem Niederschlag im S{\"u}dwesten im Oktober und im S{\"u}dosten im November zusammen. Diese Ergebnisse betonen die starken r{\"a}umlichen Zusammenh{\"a}nge der Niederschlags{\"a}nderungen. Der n{\"a}chste Schritt hinsichtlich einer Zuordnung von Niederschlagsver{\"a}nderungen zu {\"A}nderungen in großskaligen Zirkulationsmustern, war die Ableitung einer Wetterlagenklassifikation, die die betrachteten lokalen Klimavariablen hinreichend stratifizieren kann. Fokussierend auf Temperatur, Globalstrahlung und Luftfeuchte zus{\"a}tzlich zu Niederschlag, wurde eine Klassifikation basierend auf Luftdruck, Temperatur und spezifischer Luftfeuchtigkeit als am besten geeignet erachtet, die Varianz der lokalen Variablen zu erkl{\"a}ren. Eine vergleichsweise hohe Anzahl von 40 Wetterlagen wurde ausgew{\"a}hlt, die es erlaubt, typische Druckmuster durch die zus{\"a}tzlich verwendete Temperaturinformation einzelnen Jahreszeiten zuzuordnen. W{\"a}hrend die F{\"a}higkeit, Varianz im Niederschlag zu erkl{\"a}ren, relativ gering ist, ist diese deutlich besser f{\"u}r Globalstrahlung und nat{\"u}rlich Temperatur. Die meisten der aktuellen Zirkulationsmodelle des CMIP5-Ensembles sind in der Lage, die Wetterlagen hinsichtlich H{\"a}ufigkeit, Saisonalit{\"a}t und Persistenz hinreichend gut zu reproduzieren. Schließlich wurden dieWetterlagen bez{\"u}glich Ver{\"a}nderungen in ihrer H{\"a}ufigkeit, Saisonalit{\"a}t und Persistenz, sowie der Wetterlagen-spezifischen Niederschl{\"a}ge und Temperatur, untersucht. Um Unsicherheiten durch die Wahl eines bestimmten Analysezeitraums auszuschließen, wurden alle m{\"o}glichen Zeitr{\"a}ume mit mindestens 31 Jahren im Zeitraum 1901-2010 untersucht. Dadurch konnte die Annahme eines konstanten Zusammenhangs zwischen Wetterlagen und lokalem Wetter gr{\"u}ndlich {\"u}berpr{\"u}ft werden. Es wurde herausgefunden, dass diese Annahme nur zum Teil haltbar ist. W{\"a}hrend Ver{\"a}nderungen in der Temperatur haupts{\"a}chlich auf Ver{\"a}nderungen in der Wetterlagenh{\"a}ufigkeit zur{\"u}ckzuf{\"u}hren sind, wurde f{\"u}r Niederschlag ein erheblicher Teil von Ver{\"a}nderungen innerhalb einzelner Wetterlagen gefunden. Das Ausmaß und sogar das Vorzeichen der Ver{\"a}nderungen h{\"a}ngt hochgradig vom untersuchten Zeitraum ab. Die H{\"a}ufigkeit einiger Wetterlagen steht in direkter Beziehung zur langfristigen Variabilit{\"a}t großskaliger Zirkulationsmuster. Niederschlagsver{\"a}nderungen variieren nicht nur r{\"a}umlich, sondern auch zeitlich - Aussagen {\"u}ber Tendenzen sind nur in Bezug zum jeweils untersuchten Zeitraum g{\"u}ltig. W{\"a}hrend ein Teil der Ver{\"a}nderungen auf {\"A}nderungen der großskaligen Zirkulation zur{\"u}ckzuf{\"u}hren ist, gibt es auch deutliche Ver{\"a}nderungen innerhalb einzelner Wetterlagen. Die Ergebnisse betonen die Notwendigkeit f{\"u}r einen sorgf{\"a}ltigen Nachweis von Ver{\"a}nderungen m{\"o}glichst verschiedene Zeitr{\"a}ume zu untersuchen und mahnen zur Vorsicht bei der Anwendung von Downscaling-Ans{\"a}tzen mit Hilfe von Wetterlagen, da diese die Auswirkungen von Klimaver{\"a}nderungen durch das Vernachl{\"a}ssigen von Wetterlagen-internen Ver{\"a}nderungen falsch einsch{\"a}tzen k{\"o}nnten.}, language = {en} } @misc{DallmeyerClaussenFischeretal.2015, author = {Dallmeyer, Anne and Claussen, M. and Fischer, N. and Haberkorn, K. and Wagner, S. and Pfeiffer, M. and Jin, L. and Khon, Vyacheslav and Wang, Y. and Herzschuh, Ulrike}, title = {The evolution of sub-monsoon systems in the Afro-Asian monsoon region during the Holocene}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {587}, issn = {1866-8372}, doi = {10.25932/publishup-40972}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-409727}, pages = {22}, year = {2015}, abstract = {The recently proposed global monsoon hypothesis interprets monsoon systems as part of one global-scale atmospheric overturning circulation, implying a connection between the regional monsoon systems and an in-phase behaviour of all northern hemispheric monsoons on annual timescales (Trenberth et al., 2000). Whether this concept can be applied to past climates and variability on longer timescales is still under debate, because the monsoon systems exhibit different regional characteristics such as different seasonality (i. e. onset, peak and withdrawal). To investigate the interconnection of different monsoon systems during the pre-industrial Holocene, five transient global climate model simulations have been analysed with respect to the rainfall trend and variability in different sub-domains of the Afro-Asian monsoon region. Our analysis suggests that on millennial timescales with varying orbital forcing, the monsoons do not behave as a tightly connected global system. According to the models, the Indian and North African monsoons are coupled, showing similar rainfall trend and moderate correlation in centennial rainfall variability in all models. The East Asian monsoon changes independently during the Holocene. The dissimilarities in the seasonality of the monsoon sub-systems lead to a stronger response of the North African and Indian monsoon systems to the Holocene insolation forcing than of the East Asian monsoon and affect the seasonal distribution of Holocene rainfall variations. Within the Indian and North African monsoon domain, precipitation solely changes during the summer months, showing a decreasing Holocene precipitation trend. In the East Asian monsoon region, the precipitation signal is determined by an increasing precipitation trend during spring and a decreasing precipitation change during summer, partly balancing each other. A synthesis of reconstructions and the model results do not reveal an impact of the different seasonality on the timing of the Holocene rainfall optimum in the different sub-monsoon systems. Rather they indicate locally inhomogeneous rainfall changes and show that single palaeo-records should not be used to characterise the rainfall change and monsoon evolution for entire monsoon sub-systems.}, language = {en} } @misc{DallmeyerClaussenWangetal.2012, author = {Dallmeyer, Anne and Claussen, Martin and Wang, Yongbo and Herzschuh, Ulrike}, title = {Spatial variability of Holocene changes in the annual precipitation pattern}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {905}, issn = {1866-8372}, doi = {10.25932/publishup-43277}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-432771}, pages = {20}, year = {2012}, abstract = {This study provides a detailed analysis of the mid-Holocene to present-day precipitation change in the Asian monsoon region. We compare for the first time results of high resolution climate model simulations with a standardised set of mid-Holocene moisture reconstructions. Changes in the simulated summer monsoon characteristics (onset, withdrawal, length and associated rainfall) and the mechanisms causing the Holocene precipitation changes are investigated. According to the model, most parts of the Indian subcontinent received more precipitation (up to 5 mm/day) at mid-Holocene than at present-day. This is related to a stronger Indian summer monsoon accompanied by an intensified vertically integrated moisture flux convergence. The East Asian monsoon region exhibits local inhomogeneities in the simulated annual precipitation signal. The sign of this signal depends on the balance of decreased pre-monsoon and increased monsoon precipitation at mid-Holocene compared to present-day. Hence, rainfall changes in the East Asian monsoon domain are not solely associated with modifications in the summer monsoon circulation but also depend on changes in the mid-latitudinal westerly wind system that dominates the circulation during the pre-monsoon season. The proxy-based climate reconstructions confirm the regional dissimilarities in the annual precipitation signal and agree well with the model results. Our results highlight the importance of including the pre-monsoon season in climate studies of the Asian monsoon system and point out the complex response of this system to the Holocene insolation forcing. The comparison with a coarse climate model simulation reveals that this complex response can only be resolved in high resolution simulations.}, language = {en} } @misc{AgarwalMarwanMaheswaranetal.2020, author = {Agarwal, Ankit and Marwan, Norbert and Maheswaran, Rathinasamy and {\"O}zt{\"u}rk, Ugur and Kurths, J{\"u}rgen and Merz, Bruno}, title = {Optimal design of hydrometric station networks based on complex network analysis}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {951}, issn = {1866-8372}, doi = {10.25932/publishup-47100}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-471006}, pages = {19}, year = {2020}, abstract = {Hydrometric networks play a vital role in providing information for decision-making in water resource management. They should be set up optimally to provide as much information as possible that is as accurate as possible and, at the same time, be cost-effective. Although the design of hydrometric networks is a well-identified problem in hydrometeorology and has received considerable attention, there is still scope for further advancement. In this study, we use complex network analysis, defined as a collection of nodes interconnected by links, to propose a new measure that identifies critical nodes of station networks. The approach can support the design and redesign of hydrometric station networks. The science of complex networks is a relatively young field and has gained significant momentum over the last few years in different areas such as brain networks, social networks, technological networks, or climate networks. The identification of influential nodes in complex networks is an important field of research. We propose a new node-ranking measure - the weighted degree-betweenness (WDB) measure - to evaluate the importance of nodes in a network. It is compared to previously proposed measures used on synthetic sample networks and then applied to a real-world rain gauge network comprising 1229 stations across Germany to demonstrate its applicability. The proposed measure is evaluated using the decline rate of the network efficiency and the kriging error. The results suggest that WDB effectively quantifies the importance of rain gauges, although the benefits of the method need to be investigated in more detail.}, language = {en} } @misc{AgarwalMarwanMaheswaranetal.2017, author = {Agarwal, Ankit and Marwan, Norbert and Maheswaran, Rathinasamy and Merz, Bruno and Kurths, J{\"u}rgen}, title = {Multi-scale event synchronization analysis for unravelling climate processes}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {661}, issn = {1866-8372}, doi = {10.25932/publishup-41827}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418274}, pages = {13}, year = {2017}, abstract = {The temporal dynamics of climate processes are spread across different timescales and, as such, the study of these processes at only one selected timescale might not reveal the complete mechanisms and interactions within and between the (sub-) processes. To capture the non-linear interactions between climatic events, the method of event synchronization has found increasing attention recently. The main drawback with the present estimation of event synchronization is its restriction to analysing the time series at one reference timescale only. The study of event synchronization at multiple scales would be of great interest to comprehend the dynamics of the investigated climate processes. In this paper, the wavelet-based multi-scale event synchronization (MSES) method is proposed by combining the wavelet transform and event synchronization. Wavelets are used extensively to comprehend multi-scale processes and the dynamics of processes across various timescales. The proposed method allows the study of spatio-temporal patterns across different timescales. The method is tested on synthetic and real-world time series in order to check its replicability and applicability. The results indicate that MSES is able to capture relationships that exist between processes at different timescales.}, language = {en} } @misc{MarcBehlingAndermannetal.2019, author = {Marc, Odin and Behling, Robert and Andermann, Christoff and Turowski, Jens M. and Illien, Luc and Roessner, Sigrid and Hovius, Niels}, title = {Long-term erosion of the Nepal Himalayas by bedrock landsliding}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {646}, issn = {1866-8372}, doi = {10.25932/publishup-42502}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-425022}, pages = {22}, year = {2019}, abstract = {In active mountain belts with steep terrain, bedrock landsliding is a major erosional agent. In the Himalayas, landsliding is driven by annual hydro-meteorological forcing due to the summer monsoon and by rarer, exceptional events, such as earthquakes. Independent methods yield erosion rate estimates that appear to increase with sampling time, suggesting that rare, high-magnitude erosion events dominate the erosional budget. Nevertheless, until now, neither the contribution of monsoon and earthquakes to landslide erosion nor the proportion of erosion due to rare, giant landslides have been quantified in the Himalayas. We address these challenges by combining and analysing earthquake- and monsoon-induced landslide inventories across different timescales. With time series of 5 m satellite images over four main valleys in central Nepal, we comprehensively mapped landslides caused by the monsoon from 2010 to 2018. We found no clear correlation between monsoon properties and landsliding and a similar mean landsliding rate for all valleys, except in 2015, where the valleys affected by the earthquake featured ∼ 5-8 times more landsliding than the pre-earthquake mean rate. The longterm size-frequency distribution of monsoon-induced landsliding (MIL) was derived from these inventories and from an inventory of landslides larger than ∼ 0.1 km 2 that occurred between 1972 and 2014. Using a published landslide inventory for the Gorkha 2015 earthquake, we derive the size-frequency distribution for earthquake-induced landsliding (EQIL). These two distributions are dominated by infrequent, large and giant landslides but under-predict an estimated Holocene frequency of giant landslides (> 1 km 3 ) which we derived from a literature compilation. This discrepancy can be resolved when modelling the effect of a full distribution of earthquakes of variable magnitude and when considering that a shallower earthquake may cause larger landslides. In this case, EQIL and MIL contribute about equally to a total long-term erosion of ∼ 2 ± 0.75 mm yr -1 in agreement with most thermo-chronological data. Independently of the specific total and relative erosion rates, the heavy-tailed size-frequency distribution from MIL and EQIL and the very large maximal landslide size in the Himalayas indicate that mean landslide erosion rates increase with sampling time, as has been observed for independent erosion estimates. Further, we find that the sampling timescale required to adequately capture the frequency of the largest landslides, which is necessary for deriving long-term mean erosion rates, is often much longer than the averaging time of cosmogenic 10 Be methods. This observation presents a strong caveat when interpreting spatial or temporal variability in erosion rates from this method. Thus, in areas where a very large, rare landslide contributes heavily to long-term erosion (as the Himalayas), we recommend 10 Be sample in catchments with source areas > 10 000 km 2 to reduce the method mean bias to below ∼ 20 \% of the long-term erosion.}, language = {en} } @misc{HentrichTauerEspanoletal.2017, author = {Hentrich, Doreen and Tauer, Klaus and Espanol, Montserrat and Ginebra, Maria-Pau and Taubert, Andreas}, title = {EDTA and NTA effectively tune the mineralization of calcium phosphate from bulk aqueous solution}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1095}, issn = {1866-8372}, doi = {10.25932/publishup-46918}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-469186}, pages = {23}, year = {2017}, abstract = {This study describes the effects of nitrilotriacetic acid (NTA) and ethylenediaminotetraacetic acid (EDTA) on themineralization of calciumphosphate from bulk aqueous solution. Mineralization was performed between pH 6 and 9 and with NTA or EDTA concentrations of 0, 5, 10, and 15 mM. X-ray diffraction and infrared spectroscopy show that at low pH, mainly brushite precipitates and at higher pH, mostly hydroxyapatite forms. Both additives alter the morphology of the precipitates. Without additive, brushite precipitates as large plates. With NTA, the morphology changes to an unusual rod-like shape. With EDTA, the edges of the particles are rounded and disk-like particles form. Conductivity and pH measurements suggest that the final products form through several intermediate steps.}, language = {en} } @misc{MuenchKipfstuhlFreitagetal.2017, author = {M{\"u}nch, Thomas and Kipfstuhl, Sepp and Freitag, Johannes and Meyer, Hanno and Laepple, Thomas}, title = {Constraints on post-depositional isotope modifications in East Antarctic firn from analysing temporal changes of isotope profiles}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {662}, issn = {1866-8372}, doi = {10.25932/publishup-41876}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418763}, pages = {14}, year = {2017}, abstract = {The isotopic composition of water in ice sheets is extensively used to infer past climate changes. In low-accumulation regions their interpretation is, however, challenged by poorly constrained effects that may influence the initial isotope signal during and after deposition of the snow. This is reflected in snow-pit isotope data from Kohnen Station, Antarctica, which exhibit a seasonal cycle but also strong interannual variations that contradict local temperature observations. These inconsistencies persist even after averaging many profiles and are thus not explained by local stratigraphic noise. Previous studies have suggested that post-depositional processes may significantly influence the isotopic composition of East Antarctic firn. Here, we investigate the importance of post-depositional processes within the open-porous firn (greater than or similar to 10 cm depth) at Kohnen Station by separating spatial from temporal variability. To this end, we analyse 22 isotope profiles obtained from two snow trenches and examine the temporal isotope modifications by comparing the new data with published trench data extracted 2 years earlier. The initial isotope profiles undergo changes over time due to downward advection, firn diffusion and densification in magnitudes consistent with independent estimates. Beyond that, we find further modifications of the original isotope record to be unlikely or small in magnitude (<< 1 parts per thousand RMSD). These results show that the discrepancy between local temperatures and isotopes most likely originates from spatially coherent processes prior to or during deposition, such as precipitation intermittency or systematic isotope modifications acting on drifting or loose surface snow.}, language = {en} } @misc{MurawskiBuergerVorogushynetal.2016, author = {Murawski, Aline and B{\"u}rger, Gerd and Vorogushyn, Sergiy and Merz, Bruno}, title = {Can local climate variability be explained by weather patterns?}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {525}, issn = {1866-8372}, doi = {10.25932/publishup-41015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410155}, pages = {24}, year = {2016}, abstract = {To understand past flood changes in the Rhine catchment and in particular the role of anthropogenic climate change in extreme flows, an attribution study relying on a proper GCM (general circulation model) downscaling is needed. A downscaling based on conditioning a stochastic weather generator on weather patterns is a promising approach. This approach assumes a strong link between weather patterns and local climate, and sufficient GCM skill in reproducing weather pattern climatology. These presuppositions are unprecedentedly evaluated here using 111 years of daily climate data from 490 stations in the Rhine basin and comprehensively testing the number of classification parameters and GCM weather pattern characteristics. A classification based on a combination of mean sea level pressure, temperature, and humidity from the ERA20C reanalysis of atmospheric fields over central Europe with 40 weather types was found to be the most appropriate for stratifying six local climate variables. The corresponding skill is quite diverse though, ranging from good for radiation to poor for precipitation. Especially for the latter it was apparent that pressure fields alone cannot sufficiently stratify local variability. To test the skill of the latest generation of GCMs from the CMIP5 ensemble in reproducing the frequency, seasonality, and persistence of the derived weather patterns, output from 15 GCMs is evaluated. Most GCMs are able to capture these characteristics well, but some models showed consistent deviations in all three evaluation criteria and should be excluded from further attribution analysis.}, language = {en} } @misc{HargisGotschPoradaetal.2019, author = {Hargis, Hailey and Gotsch, Sybil G. and Porada, Philipp and Moore, Georgianne W. and Ferguson, Briana and Van Stan II, John T.}, title = {Arboreal epiphytes in the soil-atmosphere interface}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {928}, issn = {1866-8372}, doi = {10.25932/publishup-44199}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441993}, pages = {19}, year = {2019}, abstract = {Arboreal epiphytes (plants residing in forest canopies) are present across all major climate zones and play important roles in forest biogeochemistry. The substantial water storage capacity per unit area of the epiphyte "bucket" is a key attribute underlying their capability to influence forest hydrological processes and their related mass and energy flows. It is commonly assumed that the epiphyte bucket remains saturated, or near-saturated, most of the time; thus, epiphytes (particularly vascular epiphytes) can store little precipitation, limiting their impact on the forest canopy water budget. We present evidence that contradicts this common assumption from (i) an examination of past research; (ii) new datasets on vascular epiphyte and epi-soil water relations at a tropical montane cloud forest (Monteverde, Costa Rica); and (iii) a global evaluation of non-vascular epiphyte saturation state using a process-based vegetation model, LiBry. All analyses found that the external and internal water storage capacity of epiphyte communities is highly dynamic and frequently available to intercept precipitation. Globally, non-vascular epiphytes spend <20\% of their time near saturation and regionally, including the humid tropics, model results found that non-vascular epiphytes spend ~1/3 of their time in the dry state (0-10\% of water storage capacity). Even data from Costa Rican cloud forest sites found the epiphyte community was saturated only 1/3 of the time and that internal leaf water storage was temporally dynamic enough to aid in precipitation interception. Analysis of the epi-soils associated with epiphytes further revealed the extent to which the epiphyte bucket emptied—as even the canopy soils were often <50\% saturated (29-53\% of all days observed). Results clearly show that the epiphyte bucket is more dynamic than currently assumed, meriting further research on epiphyte roles in precipitation interception, redistribution to the surface and chemical composition of "net" precipitation waters reaching the surface.}, language = {en} }