@misc{PerovicQinOschatz2020, author = {Perovic, Milena and Qin, Qing and Oschatz, Martin}, title = {From molecular precursors to nanoparticles}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-51614}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516140}, pages = {23}, year = {2020}, abstract = {Nanoporous carbon materials (NCMs) provide the "function" of high specific surface area and thus have large interface area for interactions with surrounding species, which is of particular importance in applications related to adsorption processes. The strength and mechanism of adsorption depend on the pore architecture of the NCMs. In addition, chemical functionalization can be used to induce changes of electron density and/or electron density distribution in the pore walls, thus further modifying the interactions between carbons and guest species. Typical approaches for functionalization of nanoporous materials with regular atomic construction like porous silica, metal-organic frameworks, or zeolites, cannot be applied to NCMs due to their less defined local atomic construction and abundant defects. Therefore, synthetic strategies that offer a higher degree of control over the process of functionalization are needed. Synthetic approaches for covalent functionalization of NCMs, that is, for the incorporation of heteroatoms into the carbon backbone, are critically reviewed with a special focus on strategies following the concept "from molecules to materials." Approaches for coordinative functionalization with metallic species, and the functionalization by nanocomposite formation between pristine carbon materials and heteroatom-containing carbons, are introduced as well. Particular focus is given to the influences of these functionalizations in adsorption-related applications.}, language = {en} } @misc{Linker2020, author = {Linker, Torsten}, title = {Addition of Heteroatom Radicals to endo-Glycals}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {873}, issn = {1866-8372}, doi = {10.25932/publishup-45997}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459970}, pages = {15}, year = {2020}, abstract = {Radical reactions have found many applications in carbohydrate chemistry, especially in the construction of carbon-carbon bonds. The formation of carbon-heteroatom bonds has been less intensively studied. This mini-review will summarize the efforts to add heteroatom radicals to unsaturated carbohydrates like endo-glycals. Starting from early examples, developed more than 50 years ago, the importance of such reactions for carbohydrate chemistry and recent applications will be discussed. After a short introduction, the mini-review is divided in sub-chapters according to the heteroatoms halogen, nitrogen, phosphorus, and sulfur. The mechanisms of radical generation by chemical or photochemical processes and the subsequent reactions of the radicals at the 1-position will be discussed. This mini-review cannot cover all aspects of heteroatom-centered radicals in carbohydrate chemistry, but should provide an overview of the various strategies and future perspectives}, language = {en} }