@misc{MeilingCywińskiBald2016, author = {Meiling, Till Thomas and Cywiński, Piotr J. and Bald, Ilko}, title = {White carbon: Fluorescent carbon nanoparticles with tunable quantum yield in a reproducible green synthesis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-97087}, year = {2016}, abstract = {In this study, a new reliable, economic, and environmentally-friendly one-step synthesis is established to obtain carbon nanodots (CNDs) with well-defined and reproducible photoluminescence (PL) properties via the microwave-assisted hydrothermal treatment of starch and Tris-acetate-EDTA (TAE) buffer as carbon sources. Three kinds of CNDs are prepared using different sets of above mentioned starting materials. The as-synthesized CNDs: C-CND (starch only), N-CND 1 (starch in TAE) and N-CND 2 (TAE only) exhibit highly homogenous PL and are ready to use without need for further purification. The CNDs are stable over a long period of time (>1 year) either in solution or as freeze-dried powder. Depending on starting material, CNDs with PL quantum yield (PLQY) ranging from less than 1\% up to 28\% are obtained. The influence of the precursor concentration, reaction time and type of additives on the optical properties (UV-Vis absorption, PL emission spectrum and PLQY) is carefully investigated, providing insight into the chemical processes that occur during CND formation. Remarkably, upon freeze-drying the initially brown CND-solution turns into a non-fluorescent white/slightly brown powder which recovers PL in aqueous solution and can potentially be applied as fluorescent marker in bio-imaging, as a reduction agent or as a photocatalyst.}, language = {en} } @phdthesis{Abouserie2018, author = {Abouserie, Ahed}, title = {Ionic liquid precursors for multicomponent inorganic nanomaterials}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418950}, school = {Universit{\"a}t Potsdam}, pages = {xx, 193}, year = {2018}, abstract = {Health effects, attributed to the environmental pollution resulted from using solvents such as benzene, are relatively unexplored among petroleum workers, personal use, and laboratory researchers. Solvents can cause various health problems, such as neurotoxicity, immunotoxicity, and carcinogenicity. As such it can be absorbed via epidermal or respiratory into the human body resulting in interacting with molecules that are responsible for biochemical and physiological processes of the brain. Owing to the ever-growing demand for finding a solution, an Ionic liquid can use as an alternative solvent. Ionic liquids are salts in a liquid state at low temperature (below 100 C), or even at room temperature. Ionic liquids impart a unique architectural platform, which has been interesting because of their unusual properties that can be tuned by simple ways such as mixing two ionic liquids. Ionic liquids not only used as reaction solvents but they became a key developing for novel applications based on their thermal stability, electric conductivity with very low vapor pressure in contrast to the conventional solvents. In this study, ionic liquids were used as a solvent and reactant at the same time for the novel nanomaterials synthesis for different applications including solar cells, gas sensors, and water splitting. The field of ionic liquids continues to grow, and become one of the most important branches of science. It appears to be at a point where research and industry can work together in a new way of thinking for green chemistry and sustainable production.}, language = {en} } @phdthesis{Stete2020, author = {Stete, Felix}, title = {Gold at the nanoscale}, doi = {10.25932/publishup-49605}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-496055}, school = {Universit{\"a}t Potsdam}, pages = {X, 186}, year = {2020}, abstract = {In this cumulative dissertation, I want to present my contributions to the field of plasmonic nanoparticle science. Plasmonic nanoparticles are characterised by resonances of the free electron gas around the spectral range of visible light. In recent years, they have evolved as promising components for light based nanocircuits, light harvesting, nanosensors, cancer therapies, and many more. This work exhibits the articles I authored or co-authored in my time as PhD student at the University of Potsdam. The main focus lies on the coupling between localised plasmons and excitons in organic dyes. Plasmon-exciton coupling brings light-matter coupling to the nanoscale. This size reduction is accompanied by strong enhancements of the light field which can, among others, be utilised to enhance the spectroscopic footprint of molecules down to single molecule detection, improve the efficiency of solar cells, or establish lasing on the nanoscale. When the coupling exceeds all decay channels, the system enters the strong coupling regime. In this case, hybrid light-matter modes emerge utilisable as optical switches, in quantum networks, or as thresholdless lasers. The present work investigates plasmon-exciton coupling in gold-dye core-shell geometries and contains both fundamental insights and technical novelties. It presents a technique which reveals the anticrossing in coupled systems without manipulating the particles themselves. The method is used to investigate the relation between coupling strength and particle size. Additionally, the work demonstrates that pure extinction measurements can be insufficient when trying to assess the coupling regime. Moreover, the fundamental quantum electrodynamic effect of vacuum induced saturation is introduced. This effect causes the vacuum fluctuations to diminish the polarisability of molecules and has not yet been considered in the plasmonic context. The work additionally discusses the reaction of gold nanoparticles to optical heating. Such knowledge is of great importance for all potential optical applications utilising plasmonic nanoparticles since optical excitation always generates heat. This heat can induce a change in the optical properties, but also mechanical changes up to melting can occur. Here, the change of spectra in coupled plasmon-exciton particles is discussed and explained with a precise model. Moreover, the work discusses the behaviour of gold nanotriangles exposed to optical heating. In a pump-probe measurement, X-ray probe pulses directly monitored the particles' breathing modes. In another experiment, the triangles were exposed to cw laser radiation with varying intensities and illumination areas. X-ray diffraction directly measured the particles' temperature. Particle melting was investigated with surface enhanced Raman spectroscopy and SEM imaging demonstrating that larger illumination areas can cause melting at lower intensities. An elaborate methodological and theoretical introduction precedes the articles. This way, also readers without specialist's knowledge get a concise and detailed overview of the theory and methods used in the articles. I introduce localised plasmons in metal nanoparticles of different shapes. For this work, the plasmons were mostly coupled to excitons in J-aggregates. Therefore, I discuss these aggregates of organic dyes with sharp and intense resonances and establish an understanding of the coupling between the two systems. For ab initio simulations of the coupled systems, models for the systems' permittivites are presented, too. Moreover, the route to the sample fabrication - the dye coating of gold nanoparticles, their subsequent deposition on substrates, and the covering with polyelectrolytes - is presented together with the measurement methods that were used for the articles.}, language = {en} }