@misc{ThiekenKienzlerKreibichetal.2016, author = {Thieken, Annegret and Kienzler, Sarah and Kreibich, Heidi and Kuhlicke, Christian and Kunz, Michael and M{\"u}hr, Bernhard and M{\"u}ller, Meike and Otto, Antje and Petrow, Theresia and Pisi, Sebastian and Schr{\"o}ter, Kai}, title = {Review of the flood risk management system in Germany after the major flood in 2013}, issn = {1866-8372}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-100600}, pages = {12}, year = {2016}, abstract = {Widespread flooding in June 2013 caused damage costs of €6 to 8 billion in Germany, and awoke many memories of the floods in August 2002, which resulted in total damage of €11.6 billion and hence was the most expensive natural hazard event in Germany up to now. The event of 2002 does, however, also mark a reorientation toward an integrated flood risk management system in Germany. Therefore, the flood of 2013 offered the opportunity to review how the measures that politics, administration, and civil society have implemented since 2002 helped to cope with the flood and what still needs to be done to achieve effective and more integrated flood risk management. The review highlights considerable improvements on many levels, in particular (1) an increased consideration of flood hazards in spatial planning and urban development, (2) comprehensive property-level mitigation and preparedness measures, (3) more effective flood warnings and improved coordination of disaster response, and (4) a more targeted maintenance of flood defense systems. In 2013, this led to more effective flood management and to a reduction of damage. Nevertheless, important aspects remain unclear and need to be clarified. This particularly holds for balanced and coordinated strategies for reducing and overcoming the impacts of flooding in large catchments, cross-border and interdisciplinary cooperation, the role of the general public in the different phases of flood risk management, as well as a transparent risk transfer system. Recurring flood events reveal that flood risk management is a continuous task. Hence, risk drivers, such as climate change, land-use changes, economic developments, or demographic change and the resultant risks must be investigated at regular intervals, and risk reduction strategies and processes must be reassessed as well as adapted and implemented in a dialogue with all stakeholders.}, language = {en} } @misc{KreibichMuellerSchroeteretal.2017, author = {Kreibich, Heidi and M{\"u}ller, Meike and Schr{\"o}ter, Kai and Thieken, Annegret}, title = {New insights into flood warning reception and emergency response by affected parties}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {659}, issn = {1866-8372}, doi = {10.25932/publishup-41838}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418381}, pages = {18}, year = {2017}, abstract = {Flood damage can be mitigated if the parties at risk are reached by flood warnings and if they know how to react appropriately. To gain more knowledge about warning reception and emergency response of private households and companies, surveys were undertaken after the August 2002 and the June 2013 floods in Germany. Despite pronounced regional differences, the results show a clear overall picture: in 2002, early warnings did not work well; e.g. many households (27 \%) and companies (45 \%) stated that they had not received any flood warnings. Additionally, the preparedness of private households and companies was low in 2002, mainly due to a lack of flood experience. After the 2002 flood, many initiatives were launched and investments undertaken to improve flood risk management, including early warnings and an emergency response in Germany. In 2013, only a small share of the affected households (5 \%) and companies (3 \%) were not reached by any warnings. Additionally, private households and companies were better prepared. For instance, the share of companies which have an emergency plan in place has increased from 10\% in 2002 to 34\% in 2013. However, there is still room for improvement, which needs to be triggered mainly by effective risk and emergency communication. The challenge is to continuously maintain and advance an integrated early warning and emergency response system even without the occurrence of extreme floods.}, language = {en} } @phdthesis{Schroeter2020, author = {Schr{\"o}ter, Kai}, title = {Improved flood risk assessment}, doi = {10.25932/publishup-48024}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-480240}, school = {Universit{\"a}t Potsdam}, pages = {408}, year = {2020}, abstract = {Rivers have always flooded their floodplains. Over 2.5 billion people worldwide have been affected by flooding in recent decades. The economic damage is also considerable, averaging 100 billion US dollars per year. There is no doubt that damage and other negative effects of floods can be avoided. However, this has a price: financially and politically. Costs and benefits can be estimated through risk assessments. Questions about the location and frequency of floods, about the objects that could be affected and their vulnerability are of importance for flood risk managers, insurance companies and politicians. Thus, both variables and factors from the fields of hydrology and sociol-economics play a role with multi-layered connections. One example are dikes along a river, which on the one hand contain floods, but on the other hand, by narrowing the natural floodplains, accelerate the flood discharge and increase the danger of flooding for the residents downstream. Such larger connections must be included in the assessment of flood risk. However, in current procedures this is accompanied by simplifying assumptions. Risk assessments are therefore fuzzy and associated with uncertainties. This thesis investigates the benefits and possibilities of new data sources for improving flood risk assessment. New methods and models are developed, which take the mentioned interrelations better into account and also quantify the existing uncertainties of the model results, and thus enable statements about the reliability of risk estimates. For this purpose, data on flood events from various sources are collected and evaluated. This includes precipitation and flow records at measuring stations as well as for instance images from social media, which can help to delineate the flooded areas and estimate flood damage with location information. Machine learning methods have been successfully used to recognize and understand correlations between floods and impacts from a wide range of data and to develop improved models. Risk models help to develop and evaluate strategies to reduce flood risk. These tools also provide advanced insights into the interplay of various factors and on the expected consequences of flooding. This work shows progress in terms of an improved assessment of flood risks by using diverse data from different sources with innovative methods as well as by the further development of models. Flood risk is variable due to economic and climatic changes, and other drivers of risk. In order to keep the knowledge about flood risks up-to-date, robust, efficient and adaptable methods as proposed in this thesis are of increasing importance.}, language = {en} } @misc{MetinDungSchroeteretal.2018, author = {Metin, Ayse Duha and Dung, Nguyen Viet and Schr{\"o}ter, Kai and Guse, Bj{\"o}rn and Apel, Heiko and Kreibich, Heidi and Vorogushyn, Sergiy and Merz, Bruno}, title = {How do changes along the risk chain affect flood risk?}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1067}, issn = {1866-8372}, doi = {10.25932/publishup-46879}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-468790}, pages = {22}, year = {2018}, abstract = {Flood risk is impacted by a range of physical and socio-economic processes. Hence, the quantification of flood risk ideally considers the complete flood risk chain, from atmospheric processes through catchment and river system processes to damage mechanisms in the affected areas. Although it is generally accepted that a multitude of changes along the risk chain can occur and impact flood risk, there is a lack of knowledge of how and to what extent changes in influencing factors propagate through the chain and finally affect flood risk. To fill this gap, we present a comprehensive sensitivity analysis which considers changes in all risk components, i.e. changes in climate, catchment, river system, land use, assets, and vulnerability. The application of this framework to the mesoscale Mulde catchment in Germany shows that flood risk can vary dramatically as a consequence of plausible change scenarios. It further reveals that components that have not received much attention, such as changes in dike systems or in vulnerability, may outweigh changes in often investigated components, such as climate. Although the specific results are conditional on the case study area and the selected assumptions, they emphasize the need for a broader consideration of potential drivers of change in a comprehensive way. Hence, our approach contributes to a better understanding of how the different risk components influence the overall flood risk.}, language = {en} } @misc{RoezerMuellerBubecketal.2017, author = {R{\"o}zer, Viktor and M{\"u}ller, Meike and Bubeck, Philip and Kienzler, Sarah and Thieken, Annegret and Pech, Ina and Schr{\"o}ter, Kai and Buchholz, Oliver and Kreibich, Heidi}, title = {Coping with pluvial floods by private households}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400465}, pages = {24}, year = {2017}, abstract = {Pluvial floods have caused severe damage to urban areas in recent years. With a projected increase in extreme precipitation as well as an ongoing urbanization, pluvial flood damage is expected to increase in the future. Therefore, further insights, especially on the adverse consequences of pluvial floods and their mitigation, are needed. To gain more knowledge, empirical damage data from three different pluvial flood events in Germany were collected through computer-aided telephone interviews. Pluvial flood awareness as well as flood experience were found to be low before the respective flood events. The level of private precaution increased considerably after all events, but is mainly focused on measures that are easy to implement. Lower inundation depths, smaller potential losses as compared with fluvial floods, as well as the fact that pluvial flooding may occur everywhere, are expected to cause a shift in damage mitigation from precaution to emergency response. However, an effective implementation of emergency measures was constrained by a low dissemination of early warnings in the study areas. Further improvements of early warning systems including dissemination as well as a rise in pluvial flood preparedness are important to reduce future pluvial flood damage.}, language = {en} }