@misc{JohnsonRammKappeletal.2015, author = {Johnson, Kim L. and Ramm, Sascha and Kappel, Christian and Ward, Sally and Leyser, Ottoline and Sakamoto, Tomoaki and Kurata, Tetsuya and Bevan, Michael W. and Lenhard, Michael}, title = {The tinkerbell (tink) mutation identifies the dual-specificity MAPK phosphatase INDOLE- 3-BUTYRIC ACID-RESPONSE5 (IBR5) as a novel regulator of organ size in Arabidopsis}, series = {PLoS ONE}, journal = {PLoS ONE}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410245}, pages = {17}, year = {2015}, abstract = {Mitogen-activated dual-specificity MAPK phosphatases are important negative regulators in the MAPK signalling pathways responsible for many essential processes in plants. In a screen for mutants with reduced organ size we have identified a mutation in the active site of the dual-specificity MAPK phosphatase INDOLE-3-BUTYRIC ACID-RESPONSE5 (IBR5) that we named tinkerbell (tink) due to its small size. Analysis of the tink mutant indicates that IBR5 acts as a novel regulator of organ size that changes the rate of growth in petals and leaves. Organ size and shape regulation by IBR5 acts independently of the KLU growth-regulatory pathway. Microarray analysis of tink/ibr5-6 mutants identified a likely role for this phosphatase in male gametophyte development. We show that IBR5 may influence the size and shape of petals through auxin and TCP growth regulatory pathways.}, language = {en} } @misc{NowakRussoSchlapbachetal.2015, author = {Nowak, Michael D. and Russo, Giancarlo and Schlapbach, Ralph and Huu, Cuong Nguyen and Lenhard, Michael and Conti, Elena}, title = {The draft genome of Primula veris yields insights into the molecular basis of heterostyly}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {879}, issn = {1866-8372}, doi = {10.25932/publishup-43508}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-435088}, pages = {19}, year = {2015}, abstract = {Background The flowering plant Primula veris is a common spring blooming perennial that is widely cultivated throughout Europe. This species is an established model system in the study of the genetics, evolution, and ecology of heterostylous floral polymorphisms. Despite the long history of research focused on this and related species, the continued development of this system has been restricted due the absence of genomic and transcriptomic resources. Results We present here a de novo draft genome assembly of P. veris covering 301.8 Mb, or approximately 63\% of the estimated 479.22 Mb genome, with an N50 contig size of 9.5 Kb, an N50 scaffold size of 164 Kb, and containing an estimated 19,507 genes. The results of a RADseq bulk segregant analysis allow for the confident identification of four genome scaffolds that are linked to the P. veris S-locus. RNAseq data from both P. veris and the closely related species P. vulgaris allow for the characterization of 113 candidate heterostyly genes that show significant floral morph-specific differential expression. One candidate gene of particular interest is a duplicated GLOBOSA homolog that may be unique to Primula (PveGLO2), and is completely silenced in L-morph flowers. Conclusions The P. veris genome represents the first genome assembled from a heterostylous species, and thus provides an immensely important resource for future studies focused on the evolution and genetic dissection of heterostyly. As the first genome assembled from the Primulaceae, the P. veris genome will also facilitate the expanded application of phylogenomic methods in this diverse family and the eudicots as a whole.}, language = {en} } @misc{JantzenLynchKappeletal.2019, author = {Jantzen, Friederike and Lynch, Joseph H. and Kappel, Christian and H{\"o}fflin, Jona and Skaliter, Oded and Wozniak, Natalia Joanna and Sicard, Adrien and Sas, Claudia and Adebesin, Funmilayo and Ravid, Jasmin and Vainstein, Alexander and Hilker, Monika and Dudareva, Natalia and Lenhard, Michael}, title = {Retracing the molecular basis and evolutionary history of the loss of benzaldehyde emission in the genus Capsella}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {775}, issn = {1866-8372}, doi = {10.25932/publishup-43754}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437542}, pages = {1349 -- 1360}, year = {2019}, abstract = {The transition from pollinator-mediated outbreeding to selfing has occurred many times in angiosperms. This is generally accompanied by a reduction in traits attracting pollinators, including reduced emission of floral scent. In Capsella, emission of benzaldehyde as a main component of floral scent has been lost in selfing C. rubella by mutation of cinnamate-CoA ligase CNL1. However, the biochemical basis and evolutionary history of this loss remain unknown, as does the reason for the absence of benzaldehyde emission in the independently derived selfer Capsella orientalis. We used plant transformation, in vitro enzyme assays, population genetics and quantitative genetics to address these questions. CNL1 has been inactivated twice independently by point mutations in C. rubella, causing a loss of enzymatic activity. Both inactive haplotypes are found within and outside of Greece, the centre of origin of C. rubella, indicating that they arose before its geographical spread. By contrast, the loss of benzaldehyde emission in C. orientalis is not due to an inactivating mutation in CNL1. CNL1 represents a hotspot for mutations that eliminate benzaldehyde emission, potentially reflecting the limited pleiotropy and large effect of its inactivation. Nevertheless, even closely related species have followed different evolutionary routes in reducing floral scent.}, language = {en} } @misc{SasMuellerKappeletal.2016, author = {Sas, Claudia and M{\"u}ller, Frank and Kappel, Christian and Kent, Tyler V. and Wright, Stephen I. and Hilker, Monika and Lenhard, Michael}, title = {Repeated inactivation of the first committed enzyme underlies the loss of benzaldehyde emission after the selfing transition in Capsella}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {904}, issn = {1866-8372}, doi = {10.25932/publishup-43801}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-438018}, pages = {3313 -- 3319}, year = {2016}, abstract = {The enormous species richness of flowering plants is at least partly due to floral diversification driven by interactions between plants and their animal pollinators [1, 2]. Specific pollinator attraction relies on visual and olfactory floral cues [3-5]; floral scent can not only attract pollinators but also attract or repel herbivorous insects [6-8]. However, despite its central role for plant-animal interactions, the genetic control of floral scent production and its evolutionary modification remain incompletely understood [9-13]. Benzenoids are an important class of floral scent compounds that are generated from phenylalanine via several enzymatic pathways [14-17]. Here we address the genetic basis of the loss of floral scent associated with the transition from outbreeding to selfing in the genus Capsella. While the outbreeding C. grandiflora emits benzaldehyde as a major constituent of its floral scent, this has been lost in the selfing C. rubella. We identify the Capsella CNL1 gene encoding cinnamate: CoA ligase as responsible for this variation. Population genetic analysis indicates that CNL1 has been inactivated twice independently in C. rubella via different novel mutations to its coding sequence. Together with a recent study in Petunia [18], this identifies cinnamate: CoA ligase as an evolutionary hotspot for mutations causing the loss of benzenoid scent compounds in association with a shift in the reproductive strategy of Capsella from pollination by insects to self-fertilization.}, language = {en} } @misc{GuentherScholzZimmermannetal.2016, author = {G{\"u}nther, Oliver and Scholz, Jana and Zimmermann, Matthias and Lang, Agnetha and Kampe, Heike and Horn-Conrad, Antje and Eckardt, Barbara and Pohlmann, Markus and Engel, Silke and Hackel, Manuela and Lenhard, Michael and Schwarz, Wolfgang}, title = {Portal = Schillernd, sensibel, kraftvoll: Meere und Ozeane}, number = {03/2016}, organization = {Universit{\"a}t Potsdam, Referat f{\"u}r Presse- und {\"O}ffentlichkeitsarbeit}, issn = {1618-6893}, doi = {10.25932/publishup-44067}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-440678}, pages = {46}, year = {2016}, abstract = {Aus dem Inhalt: - Schillernd, sensibel, kraftvoll: Meere und Ozeane - Erdoberfl{\"a}che im Fokus - Reine Theorie}, language = {de} } @misc{KahlKappelJoshietal.2021, author = {Kahl, Sandra and Kappel, Christian and Joshi, Jasmin Radha and Lenhard, Michael}, title = {Phylogeography of a widely distributed plant species reveals cryptic genetic lineages with parallel phenotypic responses to warming and drought conditions}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-53003}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-530035}, pages = {13986 -- 14002}, year = {2021}, abstract = {To predict how widely distributed species will perform under future climate change, it is crucial to understand and reveal their underlying phylogenetics. However, detailed information about plant adaptation and its genetic basis and history remains scarce and especially widely distributed species receive little attention despite their putatively high adaptability. To examine the adaptation potential of a widely distributed species, we sampled the model plant Silene vulgaris across Europe. In a greenhouse experiment, we exposed the offspring of these populations to a climate change scenario for central Europe and revealed the population structure through whole-genome sequencing. Plants were grown under two temperatures (18°C and 21°C) and three precipitation regimes (65, 75, and 90 mm) to measure their response in biomass and fecundity-related traits. To reveal the population genetic structure, ddRAD sequencing was employed for a whole-genome approach. We found three major genetic clusters in S. vulgaris from Europe: one cluster comprising Southern European populations, one cluster of Western European populations, and another cluster containing central European populations. Population genetic diversity decreased with increasing latitude, and a Mantel test revealed significant correlations between FST and geographic distances as well as between genetic and environmental distances. Our trait analysis showed that the genetic clusters significantly differed in biomass-related traits and in the days to flowering. However, half of the traits showed parallel response patterns to the experimental climate change scenario. Due to the differentiated but parallel response patterns, we assume that phenotypic plasticity plays an important role for the adaptation of the widely distributed species S. vulgaris and its intraspecific genetic lineages.}, language = {en} } @misc{KappelTrostCzesnicketal.2015, author = {Kappel, Christian and Trost, Gerda and Czesnick, Hj{\"o}rdis and Ramming, Anna and Kolbe, Benjamin and Vi, Song Lang and Bispo, Cl{\´a}udia and Becker, J{\"o}rg D. and de Moor, Cornelia and Lenhard, Michael}, title = {Genome-Wide Analysis of PAPS1-Dependent Polyadenylation Identifies Novel Roles for Functionally Specialized Poly(A) Polymerases in Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-96400}, pages = {1 -- 30}, year = {2015}, abstract = {The poly(A) tail at 3' ends of eukaryotic mRNAs promotes their nuclear export, stability and translational efficiency, and changes in its length can strongly impact gene expression. The Arabidopsis thaliana genome encodes three canonical nuclear poly(A) polymerases, PAPS1, PAPS2 and PAPS4. As shown by their different mutant phenotypes, these three isoforms are functionally specialized, with PAPS1 modifying organ growth and suppressing a constitutive immune response. However, the molecular basis of this specialization is largely unknown. Here, we have estimated poly(A)-tail lengths on a transcriptome-wide scale in wild-type and paps1 mutants. This identified categories of genes as particularly strongly affected in paps1 mutants, including genes encoding ribosomal proteins, cell-division factors and major carbohydrate-metabolic proteins. We experimentally verified two novel functions of PAPS1 in ribosome biogenesis and redox homoeostasis that were predicted based on the analysis of poly(A)-tail length changes in paps1 mutants. When overlaying the PAPS1-dependent effects observed here with coexpression analysis based on independent microarray data, the two clusters of transcripts that are most closely coexpressed with PAPS1 show the strongest change in poly(A)-tail length and transcript abundance in paps1 mutants in our analysis. This suggests that their coexpression reflects at least partly the preferential polyadenylation of these transcripts by PAPS1 versus the other two poly(A)-polymerase isoforms. Thus, transcriptome-wide analysis of poly(A)-tail lengths identifies novel biological functions and likely target transcripts for polyadenylation by PAPS1. Data integration with large-scale co-expression data suggests that changes in the relative activities of the isoforms are used as an endogenous mechanism to co-ordinately modulate plant gene expression.}, language = {en} } @misc{EldridgeŁangowskiStaceyetal.2016, author = {Eldridge, Tilly and Łangowski, Łukasz and Stacey, Nicola and Jantzen, Friederike and Moubayidin, Laila and Sicard, Adrien and Southam, Paul and Kennaway, Richard and Lenhard, Michael and Coen, Enrico S. and {\O}stergaard, Lars}, title = {Fruit shape diversity in the Brassicaceae is generated by varying patterns of anisotropy}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {986}, issn = {1866-8372}, doi = {10.25932/publishup-43804}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-438041}, pages = {3394 -- 3406}, year = {2016}, abstract = {Fruits exhibit a vast array of different 3D shapes, from simple spheres and cylinders to more complex curved forms; however, the mechanism by which growth is oriented and coordinated to generate this diversity of forms is unclear. Here, we compare the growth patterns and orientations for two very different fruit shapes in the Brassicaceae: the heart-shaped Capsella rubella silicle and the near-cylindrical Arabidopsis thaliana silique. We show, through a combination of clonal and morphological analyses, that the different shapes involve different patterns of anisotropic growth during three phases. These experimental data can be accounted for by a tissue level model in which specified growth rates vary in space and time and are oriented by a proximodistal polarity field. The resulting tissue conflicts lead to deformation of the tissue as it grows. The model allows us to identify tissue-specific and temporally specific activities required to obtain the individual shapes. One such activity may be provided by the valve-identity gene FRUITFULL, which we show through comparative mutant analysis to modulate fruit shape during post-fertilisation growth of both species. Simple modulations of the model presented here can also broadly account for the variety of shapes in other Brassicaceae species, thus providing a simplified framework for fruit development and shape diversity.}, language = {en} } @misc{BreuningerLenhard2017, author = {Breuninger, Holger and Lenhard, Michael}, title = {Expression of the central growth regulator BIG BROTHER is regulated by multiple cis-elements}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400971}, pages = {10}, year = {2017}, abstract = {Background Much of the organismal variation we observe in nature is due to differences in organ size. The observation that even closely related species can show large, stably inherited differences in organ size indicates a strong genetic component to the control of organ size. Despite recent progress in identifying factors controlling organ growth in plants, our overall understanding of this process remains limited, partly because the individual factors have not yet been connected into larger regulatory pathways or networks. To begin addressing this aim, we have studied the upstream regulation of expression of BIG BROTHER (BB), a central growth-control gene in Arabidopsis thaliana that prevents overgrowth of organs. Final organ size and BB expression levels are tightly correlated, implying the need for precise control of its expression. BB expression mirrors proliferative activity, yet the gene functions to limit proliferation, suggesting that it acts in an incoherent feedforward loop downstream of growth activators to prevent over-proliferation. Results To investigate the upstream regulation of BB we combined a promoter deletion analysis with a phylogenetic footprinting approach. We were able to narrow down important, highly conserved, cis-regulatory elements within the BB promoter. Promoter sequences of other Brassicaceae species were able to partially complement the A. thaliana bb-1 mutant, suggesting that at least within the Brassicaceae family the regulatory pathways are conserved. Conclusions This work underlines the complexity involved in precise quantitative control of gene expression and lays the foundation for identifying important upstream regulators that determine BB expression levels and thus final organ size.}, language = {en} } @misc{SicardKappelJosephsetal.2015, author = {Sicard, Adrien and Kappel, Christian and Josephs, Emily B. and Wha Lee, Young and Marona, Cindy and Stinchcombe, John R. and Wright, Stephen I. and Lenhard, Michael}, title = {Divergent sorting of a balanced ancestral polymorphism underlies the establishment of gene-flow barriers in Capsella}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-93568}, year = {2015}, abstract = {In the Bateson-Dobzhansky-Muller model of genetic incompatibilities post-zygotic gene-flow barriers arise by fixation of novel alleles at interacting loci in separated populations. Many such incompatibilities are polymorphic in plants, implying an important role for genetic drift or balancing selection in their origin and evolution. Here we show that NPR1 and RPP5 loci cause a genetic incompatibility between the incipient species Capsella grandiflora and C. rubella, and the more distantly related C. rubella and C. orientalis. The incompatible RPP5 allele results from a mutation in C. rubella, while the incompatible NPR1 allele is frequent in the ancestral C. grandiflora. Compatible and incompatible NPR1 haplotypes are maintained by balancing selection in C. grandiflora, and were divergently sorted into the derived C. rubella and C. orientalis. Thus, by maintaining differentiated alleles at high frequencies, balancing selection on ancestral polymorphisms can facilitate establishing gene-flow barriers between derived populations through lineage sorting of the alternative alleles.}, language = {en} }