@article{AceroAloisioAmansetal.2017, author = {Acero, F. and Aloisio, R. and Amans, J. and Amato, Elena and Antonelli, L. A. and Aramo, C. and Armstrong, T. and Arqueros, F. and Asano, Katsuaki and Ashley, M. and Backes, M. and Balazs, C. and Balzer, A. and Bamba, Aya and Barkov, Maxim and Barrio, J. A. and Benbow, Wystan and Bernloehr, K. and Beshley, V. and Bigongiari, C. and Biland, A. and Bilinsky, A. and Bissaldi, Elisabetta and Biteau, J. and Blanch, O. and Blasi, P. and Blazek, J. and Boisson, C. and Bonanno, G. and Bonardi, A. and Bonavolonta, C. and Bonnoli, G. and Braiding, C. and Brau-Nogue, S. and Bregeon, J. and Brown, A. M. and Bugaev, V. and Bulgarelli, A. and Bulik, T. and Burton, Michael and Burtovoi, A. and Busetto, G. and Bottcher, M. and Cameron, R. and Capalbi, M. and Caproni, Anderson and Caraveo, P. and Carosi, R. and Cascone, E. and Cerruti, M. and Chaty, Sylvain and Chen, A. and Chen, X. and Chernyakova, M. and Chikawa, M. and Chudoba, J. and Cohen-Tanugi, J. and Colafrancesco, S. and Conforti, V. and Contreras, J. L. and Costa, A. and Cotter, G. and Covino, Stefano and Covone, G. and Cumani, P. and Cusumano, G. and Daniel, M. and Dazzi, F. and De Angelis, A. and De Cesare, G. and De Franco, A. and De Frondat, F. and Dal Pino, E. M. de Gouveia and De Lisio, C. and Lopez, R. de los Reyes and De Lotto, B. and de Naurois, M. and De Palma, F. and Del Santo, M. and Delgado, C. and della Volpe, D. and Di Girolamo, T. and Di Giulio, C. and Di Pierro, F. and Di Venere, L. and Doro, M. and Dournaux, J. and Dumas, D. and Dwarkadas, Vikram V. and Diaz, C. and Ebr, J. and Egberts, Kathrin and Einecke, S. and Elsaesser, D. and Eschbach, S. and Falceta-Goncalves, D. and Fasola, G. and Fedorova, E. and Fernandez-Barral, A. and Ferrand, Gilles and Fesquet, M. and Fiandrini, E. and Fiasson, A. and Filipovic, Miroslav D. and Fioretti, V. and Font, L. and Fontaine, Gilles and Franco, F. J. and Freixas Coromina, L. and Fujita, Yutaka and Fukui, Y. and Funk, S. and Forster, A. and Gadola, A. and Lopez, R. Garcia and Garczarczyk, M. and Giglietto, N. and Giordano, F. and Giuliani, A. and Glicenstein, J. and Gnatyk, R. and Goldoni, P. and Grabarczyk, T. and Graciani, R. and Graham, J. and Grandi, P. and Granot, Jonathan and Green, A. J. and Griffiths, S. and Gunji, S. and Hakobyan, H. and Hara, S. and Hassan, T. and Hayashida, M. and Heller, M. and Helo, J. C. and Hinton, J. and Hnatyk, B. and Huet, J. and Huetten, M. and Humensky, T. B. and Hussein, M. and Horandel, J. and Ikeno, Y. and Inada, T. and Inome, Y. and Inoue, S. and Inoue, T. and Inoue, Y. and Ioka, K. and Iori, Maurizio and Jacquemier, J. and Janecek, P. and Jankowsky, D. and Jung, I. and Kaaret, P. and Katagiri, H. and Kimeswenger, S. and Kimura, Shigeo S. and Knodlseder, J. and Koch, B. and Kocot, J. and Kohri, K. and Komin, N. and Konno, Y. and Kosack, K. and Koyama, S. and Kraus, Michaela and Kubo, Hidetoshi and Mezek, G. Kukec and Kushida, J. and La Palombara, N. and Lalik, K. and Lamanna, G. and Landt, H. and Lapington, J. and Laporte, P. and Lee, S. and Lees, J. and Lefaucheur, J. and Lenain, J. -P. and Leto, Giuseppe and Lindfors, E. and Lohse, T. and Lombardi, S. and Longo, F. and Lopez, M. and Lucarelli, F. and Luque-Escamilla, Pedro Luis and Lopez-Coto, R. and Maccarone, M. C. and Maier, G. and Malaguti, G. and Mandat, D. and Maneva, G. and Mangano, S. and Marcowith, Alexandre and Marti, J. and Martinez, M. and Martinez, G. and Masuda, S. and Maurin, G. and Maxted, N. and Melioli, Claudio and Mineo, T. and Mirabal, N. and Mizuno, T. and Moderski, R. and Mohammed, M. and Montaruli, T. and Moralejo, A. and Mori, K. and Morlino, G. and Morselli, A. and Moulin, Emmanuel and Mukherjee, R. and Mundell, C. and Muraishi, H. and Murase, Kohta and Nagataki, Shigehiro and Nagayoshi, T. and Naito, T. and Nakajima, D. and Nakamori, T. and Nemmen, R. and Niemiec, Jacek and Nieto, D. and Nievas-Rosillo, M. and Nikolajuk, M. and Nishijima, K. and Noda, K. and Nogues, L. and Nosek, D. and Novosyadlyj, B. and Nozaki, S. and Ohira, Yutaka and Ohishi, M. and Ohm, S. and Okumura, A. and Ong, R. A. and Orito, R. and Orlati, A. and Ostrowski, M. and Oya, I. and Padovani, Marco and Palacio, J. and Palatka, M. and Paredes, Josep M. and Pavy, S. and Persic, M. and Petrucci, P. and Petruk, Oleh and Pisarski, A. and Pohl, Martin and Porcelli, A. and Prandini, E. and Prast, J. and Principe, G. and Prouza, M. and Pueschel, Elisa and Puelhofer, G. and Quirrenbach, A. and Rameez, M. and Reimer, O. and Renaud, M. and Ribo, M. and Rico, J. and Rizi, V. and Rodriguez, J. and Fernandez, G. Rodriguez and Rodriguez Vazquez, J. J. and Romano, Patrizia and Romeo, G. and Rosado, J. and Rousselle, J. and Rowell, G. and Rudak, B. and Sadeh, I. and Safi-Harb, S. and Saito, T. and Sakaki, N. and Sanchez, D. and Sangiorgi, P. and Sano, H. and Santander, M. and Sarkar, S. and Sawada, M. and Schioppa, E. J. and Schoorlemmer, H. and Schovanek, P. and Schussler, F. and Sergijenko, O. and Servillat, M. and Shalchi, A. and Shellard, R. C. and Siejkowski, H. and Sillanpaa, A. and Simone, D. and Sliusar, V. and Sol, H. and Stanic, S. and Starling, R. and Stawarz, L. and Stefanik, S. and Stephan, M. and Stolarczyk, T. and Szanecki, M. and Szepieniec, T. and Tagliaferri, G. and Tajima, H. and Takahashi, M. and Takeda, J. and Tanaka, M. and Tanaka, S. and Tejedor, L. A. and Telezhinsky, Igor O. and Temnikov, P. and Terada, Y. and Tescaro, D. and Teshima, M. and Testa, V. and Thoudam, S. and Tokanai, F. and Torres, D. F. and Torresi, E. and Tosti, G. and Townsley, C. and Travnicek, P. and Trichard, C. and Trifoglio, M. and Tsujimoto, S. and Vagelli, V. and Vallania, P. and Valore, L. and van Driel, W. and van Eldik, C. and Vandenbroucke, Justin and Vassiliev, V. and Vecchi, M. and Vercellone, Stefano and Vergani, S. and Vigorito, C. and Vorobiov, S. and Vrastil, M. and Vazquez Acosta, M. L. and Wagner, S. J. and Wagner, R. and Wakely, S. P. and Walter, R. and Ward, J. E. and Watson, J. J. and Weinstein, A. and White, M. and White, R. and Wierzcholska, A. and Wilcox, P. and Williams, D. A. and Wischnewski, R. and Wojcik, P. and Yamamoto, T. and Yamamoto, H. and Yamazaki, Ryo and Yanagita, S. and Yang, L. and Yoshida, T. and Yoshida, M. and Yoshiike, S. and Yoshikoshi, T. and Zacharias, M. and Zampieri, L. and Zanin, R. and Zavrtanik, M. and Zavrtanik, D. and Zdziarski, A. and Zech, Alraune and Zechlin, Hannes and Zhdanov, V. and Ziegler, A. and Zorn, J.}, title = {Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7-3946}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {840}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aa6d67}, pages = {14}, year = {2017}, abstract = {We perform simulations for future Cherenkov Telescope Array (CTA) observations of RX J1713.7-3946, a young supernova remnant (SNR) and one of the brightest sources ever discovered in very high energy (VHE) gamma rays. Special attention is paid to exploring possible spatial (anti) correlations of gamma rays with emission at other wavelengths, in particular X-rays and CO/H I emission. We present a series of simulated images of RX J1713.7-3946 for CTA based on a set of observationally motivated models for the gamma-ray emission. In these models, VHE gamma rays produced by high-energy electrons are assumed to trace the nonthermal X-ray emission observed by XMM-Newton, whereas those originating from relativistic protons delineate the local gas distributions. The local atomic and molecular gas distributions are deduced by the NANTEN team from CO and H I observations. Our primary goal is to show how one can distinguish the emission mechanism(s) of the gamma rays (i.e., hadronic versus leptonic, or a mixture of the two) through information provided by their spatial distribution, spectra, and time variation. This work is the first attempt to quantitatively evaluate the capabilities of CTA to achieve various proposed scientific goals by observing this important cosmic particle accelerator.}, language = {en} } @misc{BohdanNiemiecKobzaretal.2019, author = {Bohdan, Artem and Niemiec, Jacek and Kobzar, Oleh and Pohl, Martin}, title = {Erratum: Electron Pre-acceleration at Nonrelativistic High-Mach-number Perpendicular Shocks (The astrophysical journal : an international review of spectroscopy and astronomical physics. - Vol 847, 2017, 71)}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {880}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab2f89}, pages = {1}, year = {2019}, language = {en} } @article{BohdanNiemiecKobzaretal.2017, author = {Bohdan, Artem and Niemiec, Jacek and Kobzar, Oleh and Pohl, Martin}, title = {Electron Pre-acceleration at Nonrelativistic High-Mach-number Perpendicular Shocks}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {847}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aa872a}, pages = {17}, year = {2017}, abstract = {We perform particle-in-cell simulations of perpendicular nonrelativistic collisionless shocks to study electron heating and pre-acceleration for parameters that permit the extrapolation to the conditions at young supernova remnants. Our high-resolution large-scale numerical experiments sample a representative portion of the shock surface and demonstrate that the efficiency of electron injection is strongly modulated with the phase of the shock reformation. For plasmas with low and moderate temperature (plasma beta beta p =5.10(-4) and 0.5 beta p =), we explore the nonlinear shock structure and electron pre-acceleration for various orientations of the large-scale magnetic field with respect to the simulation plane, while keeping it at 90 degrees to the shock normal. Ion reflection off of the shock leads to the formation of magnetic filaments in the shock ramp, resulting from Weibel-type instabilities, and electrostatic Buneman modes in the shock foot. In all of the cases under study, the latter provides first-stage electron energization through the shock-surfing acceleration mechanism. The subsequent energization strongly depends on the field orientation and proceeds through adiabatic or second-order Fermi acceleration processes for configurations with the out-of-plane and in-plane field components, respectively. For strictly out-of-plane field, the fraction of suprathermal electrons is much higher than for other configurations, because only in this case are the Buneman modes fully captured by the 2D simulation grid. Shocks in plasma with moderate bp provide more efficient pre-acceleration. The relevance of our results to the physics of fully 3D systems is discussed.}, language = {en} } @article{BohdanNiemiecPohletal.2019, author = {Bohdan, Artem and Niemiec, Jacek and Pohl, Martin and Matsumoto, Yosuke and Amano, Takanobu and Hoshino, Masahiro}, title = {Kinetic Simulations of Nonrelativistic Perpendicular Shocks of Young Supernova Remnants. II. Influence of Shock-surfing Acceleration on Downstream Electron Spectra}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {885}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab43cf}, pages = {9}, year = {2019}, abstract = {We explore electron preacceleration at high-Mach-number nonrelativistic perpendicular shocks at, e.g., young supernova remnants, which are a prerequisite of further acceleration to very high energies via diffusive shock acceleration. Using fully kinetic particle-in-cell simulations of shocks and electron dynamics in them, we investigate the influence of shock-surfing acceleration (SSA) at the shock foot on the nonthermal population of electrons downstream of the shock. The SSA is followed by further energization at the shock ramp where the Weibel instability spawns a type of second-order Fermi acceleration. The combination of these two processes leads to the formation of a nonthermal electron population, but the importance of SSA becomes smaller for larger ion-to-electron mass ratios in the simulation. We discuss the resulting electron spectra and the relevance of our results to the physics of systems with real ion-to-electron mass ratios and fully three-dimensional behavior.}, language = {en} } @article{BohdanNiemiecPohletal.2019, author = {Bohdan, Artem and Niemiec, Jacek and Pohl, Martin and Matsumoto, Yosuke and Amano, Takanobu and Hoshino, Masahiro}, title = {Kinetic Simulations of Nonrelativistic Perpendicular Shocks of Young Supernova Remnants}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {878}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab1b6d}, pages = {11}, year = {2019}, abstract = {Electron injection at high Mach number nonrelativistic perpendicular shocks is studied here for parameters that are applicable to young SNR shocks. Using high-resolution large-scale two-dimensional fully kinetic particle-in-cell simulations and tracing individual particles, we in detail analyze the shock-surfing acceleration (SSA) of electrons at the leading edge of the shock foot. The central question is to what degree the process can be captured in 2D3V simulations. We find that the energy gain in SSA always arises from the electrostatic field of a Buneman wave. Electron energization is more efficient in the out-of-plane orientation of the large-scale magnetic field because both the phase speed and the amplitude of the waves are higher than for the in-plane scenario. Also, a larger number of electrons is trapped by the waves compared to the in-plane configuration. We conclude that significant modifications of the simulation parameters are needed to reach the same level of SSA efficiency as in simulations with out-of-plane magnetic field or 3D simulations.}, language = {en} } @article{IwamotoAmanoHoshinoetal.2019, author = {Iwamoto, Masanori and Amano, Takanobu and Hoshino, Masahiro and Matsumoto, Yosuke and Niemiec, Jacek and Ligorini, Arianna and Kobzar, Oleh and Pohl, Martin}, title = {Precursor Wave Amplification by Ion-Electron Coupling through Wakefield in Relativistic Shocks}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {883}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.3847/2041-8213/ab4265}, pages = {6}, year = {2019}, abstract = {We investigated electromagnetic precursor wave emission in relativistic shocks by using two-dimensional particle-in-cell simulations. We found that the wave amplitude is significantly enhanced by a positive feedback process associated with ion-electron coupling through the wakefields for high magnetization. The wakefields collapse during the nonlinear process of the parametric decay instability in the near-upstream region, where nonthermal electrons and ions are generated. The intense coherent emission and the particle acceleration may operate in high-energy astrophysical objects.}, language = {en} } @article{JaoVafinChenetal.2019, author = {Jao, Chun-Sung and Vafin, Sergei and Chen, Ye and Gross, Matthias and Krasilnikov, Mikhail and Loisch, Gregor and Mehrling, Timon and Niemiec, Jacek and Oppelt, Anne and de la Ossa, Alberto Martinez and Osterhoff, Jens and Pohl, Martin and Stephan, Frank}, title = {Preliminary study for the laboratory experiment of cosmic-rays driven magnetic field amplification}, series = {High Energy Density Physics}, volume = {32}, journal = {High Energy Density Physics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1574-1818}, doi = {10.1016/j.hedp.2019.04.001}, pages = {31 -- 43}, year = {2019}, abstract = {To understand astrophysical magnetic-field amplification, we conducted a feasibility study for a laboratory experiment of a non-resonant streaming instability at the Photo Injector Test Facility at DESY, Zeuthen site (PITZ). This non-resonant streaming instability, also known as Bell's instability, is generally regarded as a candidate for the amplification of interstellar magnetic field in the upstream region of supernova-remnant shocks, which is crucial for the efficiency of diffusive shock acceleration. In the beam-plasma system composed of a radio-frequency electron gun and a gas-discharge plasma cell, the goal of our experiment is to demonstrate the development of the non-resonant streaming instability and to find its saturation level in the laboratory environment. Since we find that the electron beam will be significantly decelerated on account of an electrostatic streaming instability, which will decrease the growth rate of desired non-resonant streaming instability, we discuss possible ways to suppress the electrostatic streaming instability by considering the characteristics of a field-emission-based quasi continuous-wave electron beam.}, language = {en} } @article{KobzarNiemiecPohletal.2017, author = {Kobzar, Oleh and Niemiec, Jacek and Pohl, Martin and Bohdan, Artem}, title = {Spatio-temporal evolution of the non-resonant instability in shock precursors of young supernova remnants}, series = {Monthly notices of the Royal Astronomical Society}, volume = {469}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, organization = {ANTARES Collaboration;H E S S Collaboration}, issn = {0035-8711}, doi = {10.1093/mnras/stx1201}, pages = {4985 -- 4998}, year = {2017}, abstract = {A non-resonant cosmic ray (CR) current-driven instability may operate in the shock precursors of young supernova remnants and be responsible for magnetic-field amplification, plasma heating and turbulence. Earlier simulations demonstrated magnetic-field amplification, and in kinetic studies a reduction of the relative drift between CRs and thermal plasma was observed as backreaction. However, all published simulations used periodic boundary conditions, which do not account for mass conservation in decelerating flows and only allow the temporal development to be studied. Here we report results of fully kinetic particle-in-cell simulations with open boundaries that permit inflow of plasma on one side of the simulation box and outflow at the other end, hence allowing an investigation of both the temporal and the spatial development of the instability. Magnetic-field amplification proceeds as in studies with periodic boundaries and, observed here for the first time, the reduction of relative drifts causes the formation of a shock-like compression structure at which a fraction of the plasma ions are reflected. Turbulent electric field generated by the non-resonant instability inelastically scatters CRs, modifying and anisotropizing their energy distribution. Spatial CR scattering is compatible with Bohm diffusion. Electromagnetic turbulence leads to significant non-adiabatic heating of the background plasma maintaining bulk equipartition between ions and electrons. The highest temperatures are reached at sites of large-amplitude electrostatic fields. Ion spectra show supra-thermal tails resulting from stochastic scattering in the turbulent electric field. Together, these modifications in the plasma flow will affect the properties of the shock and particle acceleration there.}, language = {en} } @article{MizunoPohlNiemiecetal.2014, author = {Mizuno, Yosuke and Pohl, Martin and Niemiec, Jacek and Zhang, Bing and Nishikawa, Ken-Ichi and Hardee, Philip E.}, title = {Magnetic field amplification and saturation in turbulence behind a relativistic shock}, series = {Monthly notices of the Royal Astronomical Society}, volume = {439}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stu196}, pages = {3490 -- 3503}, year = {2014}, abstract = {We have investigated via 2D relativistic magnetohydrodynamic simulations the long-term evolution of turbulence created by a relativistic shock propagating through an inhomogeneous medium. In the post-shock region, magnetic field is strongly amplified by turbulent motions triggered by pre-shock density inhomogeneities. Using a long-simulation box we have followed the magnetic field amplification until it is fully developed and saturated. The turbulent velocity is subrelativistic even for a strong shock. Magnetic field amplification is controlled by the turbulent motion and saturation occurs when the magnetic energy is comparable to the turbulent kinetic energy. Magnetic field amplification and saturation depend on the initial strength and direction of the magnetic field in the pre-shock medium, and on the shock strength. If the initial magnetic field is perpendicular to the shock normal, the magnetic field is first compressed at the shock and then can be amplified by turbulent motion in the post-shock region. Saturation occurs when the magnetic energy becomes comparable to the turbulent kinetic energy in the post-shock region. If the initial magnetic field in the pre-shock medium is strong, the post-shock region becomes turbulent but significant field amplification does not occur. If the magnetic energy after shock compression is larger than the turbulent kinetic energy in the post-shock region, significant field amplification does not occur. We discuss possible applications of our results to gamma-ray bursts and active galactic nuclei.}, language = {en} } @article{MizunoPohlNiemiecetal.2011, author = {Mizuno, Yosuke and Pohl, Martin and Niemiec, Jacek and Zhang, Bing and Nishikawa, Ken-Ichi and Hardee, Philip E.}, title = {Magnetic-field amplification by turbulence in a relativistic shockpropagating through an inhomogeneous medium}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {726}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/726/2/62}, pages = {11}, year = {2011}, abstract = {We perform two-dimensional relativistic magnetohydrodynamic simulations of a mildly relativistic shock propagating through an inhomogeneous medium. We show that the postshock region becomes turbulent owing to preshock density inhomogeneity, and the magnetic field is strongly amplified due to the stretching and folding of field lines in the turbulent velocity field. The amplified magnetic field evolves into a filamentary structure in two-dimensional simulations. The magnetic energy spectrum is flatter than the Kolmogorov spectrum and indicates that a so-called small-scale dynamo is occurring in the postshock region. We also find that the amount of magnetic-field amplification depends on the direction of the mean preshock magnetic field, and the timescale of magnetic-field growth depends on the shock strength.}, language = {en} }