@article{WeberAbuAyyashAbueladasetal.2009, author = {Weber, Michael H. and Abu-Ayyash, Khalil and Abueladas, Abdel-Rahman and Agnon, Amotz and Alasonati-Taš{\´a}rov{\´a}, Zuzana and Al-Zubi, Hashim and Babeyko, Andrey and Bartov, Yuval and Bauer, Klaus and Becken, Michael and Bedrosian, Paul A. and Ben-Avraham, Zvi and Bock, G{\"u}nter and Bohnhoff, Marco and Bribach, Jens and Dulski, Peter and Ebbing, Joerg and El-Kelani, Radwan J. and Foerster, Andrea and F{\"o}rster, Hans-J{\"u}rgen and Frieslander, Uri and Garfunkel, Zvi and G{\"o}tze, Hans-J{\"u}rgen and Haak, Volker and Haberland, Christian and Hassouneh, Mohammed and Helwig, Stefan L. and Hofstetter, Alfons and Hoffmann-Rothe, Arne and Jaeckel, Karl-Heinz and Janssen, Christoph and Jaser, Darweesh and Kesten, Dagmar and Khatib, Mohammed Ghiath and Kind, Rainer and Koch, Olaf and Koulakov, Ivan and Laske, Maria Gabi and Maercklin, Nils}, title = {Anatomy of the Dead Sea transform from lithospheric to microscopic scale}, issn = {8755-1209}, doi = {10.1029/2008rg000264}, year = {2009}, abstract = {Fault zones are the locations where motion of tectonic plates, often associated with earthquakes, is accommodated. Despite a rapid increase in the understanding of faults in the last decades, our knowledge of their geometry, petrophysical properties, and controlling processes remains incomplete. The central questions addressed here in our study of the Dead Sea Transform (DST) in the Middle East are as follows: (1) What are the structure and kinematics of a large fault zone? (2) What controls its structure and kinematics? (3) How does the DST compare to other plate boundary fault zones? The DST has accommodated a total of 105 km of left-lateral transform motion between the African and Arabian plates since early Miocene (similar to 20 Ma). The DST segment between the Dead Sea and the Red Sea, called the Arava/Araba Fault (AF), is studied here using a multidisciplinary and multiscale approach from the mu m to the plate tectonic scale. We observe that under the DST a narrow, subvertical zone cuts through crust and lithosphere. First, from west to east the crustal thickness increases smoothly from 26 to 39 km, and a subhorizontal lower crustal reflector is detected east of the AF. Second, several faults exist in the upper crust in a 40 km wide zone centered on the AF, but none have kilometer-size zones of decreased seismic velocities or zones of high electrical conductivities in the upper crust expected for large damage zones. Third, the AF is the main branch of the DST system, even though it has accommodated only a part (up to 60 km) of the overall 105 km of sinistral plate motion. Fourth, the AF acts as a barrier to fluids to a depth of 4 km, and the lithology changes abruptly across it. Fifth, in the top few hundred meters of the AF a locally transpressional regime is observed in a 100-300 m wide zone of deformed and displaced material, bordered by subparallel faults forming a positive flower structure. Other segments of the AF have a transtensional character with small pull-aparts along them. The damage zones of the individual faults are only 5-20 m wide at this depth range. Sixth, two areas on the AF show mesoscale to microscale faulting and veining in limestone sequences with faulting depths between 2 and 5 km. Seventh, fluids in the AF are carried downward into the fault zone. Only a minor fraction of fluids is derived from ascending hydrothermal fluids. However, we found that on the kilometer scale the AF does not act as an important fluid conduit. Most of these findings are corroborated using thermomechanical modeling where shear deformation in the upper crust is localized in one or two major faults; at larger depth, shear deformation occurs in a 20-40 km wide zone with a mechanically weak decoupling zone extending subvertically through the entire lithosphere.}, language = {en} } @article{MaercklinHaberlandRybergetal.2004, author = {Maercklin, Nils and Haberland, Christian and Ryberg, Trond and Weber, Michael H. and Bartov, Yosef}, title = {Imaging the Dead Sea Transform with scattered seismic waves}, issn = {0956-540X}, year = {2004}, abstract = {With controlled seismic sources and specifically designed receiver arrays, we image a subvertical boundary between two lithological blocks at the Arava Fault (AF) in the Middle East. The AF is the main strike-slip fault of the Dead Sea Transform (DST) in the segment between the Dead Sea and the Red Sea. Our imaging (migration) method is based on array beamforming and coherence analysis of P to P scattered seismic phases. We use a 1-D background velocity model and the direct P arrival as a reference phase. Careful resolution testing is necessary, because the target volume is irregularly sampled by rays. A spread function describing energy dispersion at localized point scatterers and synthetic calculations for large planar structures provides estimates of the resolution of the images. We resolve a 7 km long steeply dipping reflector offset roughly 1 km from the surface trace of the AF. The reflector can be imaged from about 1 km down to 4 km depth. Previous and ongoing studies in this region have shown a strong contrast across the fault: low seismic velocities and electrical resistivities to the west and high velocities and resistivities to the east of it. We therefore suggest that the imaged reflector marks the contrast between young sedimentary fill in the west and Precambrian rocks in the east. If correct, the boundary between the two blocks is offset about 1 km east of the current surface trace of the AF}, language = {en} } @article{WeberAbuAyyashAbueladasetal.2004, author = {Weber, Michael H. and Abu-Ayyash, Khalil and Abueladas, Abdel-Rahman and Agnon, Amotz and Al-Amoush, H. and Babeyko, Andrey and Bartov, Yosef and Baumann, M. and Ben-Avraham, Zvi and Bock, G{\"u}nter and Bribach, Jens and El-Kelani, R. and Forster, A. and F{\"o}rster, Hans-J{\"u}rgen and Frieslander, U. and Garfunkel, Zvi and Grunewald, Steffen and Gotze, Hans-J{\"u}rgen and Haak, Volker and Haberland, Christian and Hassouneh, Mohammed and Helwig, S. and Hofstetter, Alfons and Jackel, K. H. and Kesten, Dagmar and Kind, Rainer and Maercklin, Nils and Mechie, James and Mohsen, Amjad and Neubauer, F. M. and Oberh{\"a}nsli, Roland and Qabbani, I. and Ritter, O. and Rumpker, G. and Rybakov, M. and Ryberg, Trond and Scherbaum, Frank and Schmidt, J. and Schulze, A. and Sobolev, Stephan Vladimir and Stiller, M. and Th,}, title = {The crustal structure of the Dead Sea Transform}, year = {2004}, abstract = {To address one of the central questions of plate tectonics-How do large transform systems work and what are their typical features?-seismic investigations across the Dead Sea Transform (DST), the boundary between the African and Arabian plates in the Middle East, were conducted for the first time. A major component of these investigations was a combined reflection/ refraction survey across the territories of Palestine, Israel and Jordan. The main results of this study are: (1) The seismic basement is offset by 3-5 km under the DST, (2) The DST cuts through the entire crust, broadening in the lower crust, (3) Strong lower crustal reflectors are imaged only on one side of the DST, (4) The seismic velocity sections show a steady increase in the depth of the crust-mantle transition (Moho) from 26 km at the Mediterranean to 39 km under the Jordan highlands, with only a small but visible, asymmetric topography of the Moho under the DST. These observations can be linked to the left-lateral movement of 105 km of the two plates in the last 17 Myr, accompanied by strong deformation within a narrow zone cutting through the entire crust. Comparing the DST and the San Andreas Fault (SAF) system, a strong asymmetry in subhorizontal lower crustal reflectors and a deep reaching deformation zone both occur around the DST and the SAF. The fact that such lower crustal reflectors and deep deformation zones are observed in such different transform systems suggests that these structures are possibly fundamental features of large transform plate boundaries}, language = {en} } @article{MaercklinBedrosianHaberlandetal.2005, author = {Maercklin, Nils and Bedrosian, Paul A. and Haberland, Christian and Ritter, O. and Ryberg, Trond and Weber, Michael H. and Weckmann, U.}, title = {Characterizing a large shear-zone with seismic and magnetotelluric methods : the case of the Dead Sea Transform}, issn = {0094-8276}, year = {2005}, abstract = {Seismic tomography, imaging of seismic scatterers, and magnetotelluric soundings reveal a sharp lithologic contrast along a similar to 10 km long segment of the Arava Fault (AF), a prominent fault of the southern Dead Sea Transform (DST) in the Middle East. Low seismic velocities and resistivities occur on its western side and higher values east of it, and the boundary between the two units coincides partly with a seismic scattering image. At 1 - 4 km depth the boundary is offset to the east of the AF surface trace, suggesting that at least two fault strands exist, and that slip occurred on multiple strands throughout the margin's history. A westward fault jump, possibly associated with straightening of a fault bend, explains both our observations and the narrow fault zone observed by others}, language = {en} } @phdthesis{Maercklin2004, author = {Maercklin, Nils}, title = {Seismic structure of the Arava Fault, Dead Sea Transform}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001469}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Ein transversales St{\"o}rungssystem im Nahen Osten, die Dead Sea Transform (DST), trennt die Arabische Platte von der Sinai-Mikroplatte und erstreckt sich von S{\"u}den nach Norden vom Extensionsgebiet im Roten Meer {\"u}ber das Tote Meer bis zur Taurus-Zagros Kollisionszone. Die sinistrale DST bildete sich im Mioz{\"a}n vor etwa 17 Ma und steht mit dem Aufbrechen des Afro-Arabischen Kontinents in Verbindung. Das Untersuchungsgebiet liegt im Arava Tal zwischen Totem und Rotem Meer, mittig {\"u}ber der Arava St{\"o}rung (Arava Fault, AF), die hier den Hauptast der DST bildet. Eine Reihe seismischer Experimente, aufgebaut aus k{\"u}nstlichen Quellen, linearen Profilen {\"u}ber die St{\"o}rung und entsprechend entworfenen Empf{\"a}nger-Arrays, zeigt die Untergrundstruktur in der Umgebung der AF und der Verwerfungszone selbst bis in eine Tiefe von 3-4 km. Ein tomographisch bestimmtes Modell der seismischen Geschwindigkeiten von P-Wellen zeigt einen starken Kontrast nahe der AF mit niedrigeren Geschwindigkeiten auf der westlichen Seite als im Osten. Scherwellen lokaler Erdbeben liefern ein mittleres P-zu-S Geschwindigkeitsverh{\"a}ltnis und es gibt Anzeichen f{\"u}r {\"A}nderungen {\"u}ber die St{\"o}rung hinweg. Hoch aufgel{\"o}ste tomographische Geschwindigkeitsmodelle best{\"a}tigen der Verlauf der AF und stimmen gut mit der Oberfl{\"a}chengeologie {\"u}berein. Modelle des elektrischen Widerstands aus magnetotellurischen Messungen im selben Gebiet zeigen eine leitf{\"a}hige Schicht westlich der AF, schlecht leitendes Material {\"o}stlich davon und einen starken Kontrast nahe der AF, die den Fluss von Fluiden von einer Seite zur anderen zu verhindern scheint. Die Korrelation seismischer Geschwindigkeiten und elektrischer Widerst{\"a}nde erlaubt eine Charakterisierung verschiedener Lithologien im Untergrund aus deren physikalischen Eigenschaften. Die westliche Seite l{\"a}sst sich durch eine geschichtete Struktur beschreiben, wogegen die {\"o}stliche Seite eher einheitlich erscheint. Die senkrechte Grenze zwischen den westlichen Einheiten und der {\"o}stlichen scheint gegen{\"u}ber der Oberfl{\"a}chenauspr{\"a}gung der AF nach Osten verschoben zu sein. Eine Modellierung von seismischen Reflexionen an einer St{\"o}rung deutet an, dass die Grenze zwischen niedrigen und hohen Geschwindigkeiten eher scharf ist, sich aber durch eine raue Oberfl{\"a}che auf der L{\"a}ngenskala einiger hundert Meter auszeichnen kann, was die Streuung seismischer Wellen beg{\"u}nstigte. Das verwendete Abbildungsverfahren (Migrationsverfahren) f{\"u}r seismische Streuk{\"o}rper basiert auf Array Beamforming und der Koh{\"a}renzanalyse P-zu-P gestreuter seismischer Phasen. Eine sorgf{\"a}ltige Bestimmung der Aufl{\"o}sung sichert zuverl{\"a}ssige Abbildungsergebnisse. Die niedrigen Geschwindigkeiten im Westen entsprechen der jungen sediment{\"a}ren F{\"u}llung im Arava Tal, und die hohen Geschwindigkeiten stehen mit den dortigen pr{\"a}kambrischen Magmatiten in Verbindung. Eine 7 km lange Zone seismischer Streuung (Reflektor) ist gegen{\"u}ber der an der Oberfl{\"a}che sichtbaren AF um 1 km nach Osten verschoben und l{\"a}sst sich im Tiefenbereich von 1 km bis 4 km abbilden. Dieser Reflektor markiert die Grenze zwischen zwei lithologischen Bl{\"o}cken, die vermutlich wegen des horizontalen Versatzes entlang der DST nebeneinander zu liegen kamen. Diese Interpretation als lithologische Grenze wird durch die gemeinsame Auswertung der seismischen und magnetotellurischen Modelle gest{\"u}tzt. Die Grenze ist m{\"o}glicherweise ein Ast der AF, der versetzt gegen{\"u}ber des heutigen, aktiven Asts verl{\"a}uft. Der Gesamtversatz der DST k{\"o}nnte r{\"a}umlich und zeitlich auf diese beiden {\"A}ste und m{\"o}glicherweise auch auf andere St{\"o}rungen in dem Gebiet verteilt sein.}, language = {en} }