@article{LilliestamMelligerOllieretal.2020, author = {Lilliestam, Johan and Melliger, Marc Andr{\´e} and Ollier, Lana and Schmidt, Tobias S. and Steffen, Bjarne}, title = {Understanding and accounting for the effect of exchange rate fluctuations on global learning rates}, series = {Nature energy}, volume = {5}, journal = {Nature energy}, number = {1}, publisher = {Nature Publishing Group}, address = {Berlin}, issn = {2058-7546}, doi = {10.1038/s41560-019-0531-y}, pages = {71 -- 78}, year = {2020}, abstract = {Learning rates are a central concept in energy system models and integrated assessment models, as they allow researchers to project the future costs of new technologies and to optimize energy system costs. Here we argue that exchange rate fluctuations are an important, but thus far overlooked, determinant of the learning-rate variance observed in the literature. We explore how empirically observed global learning rates depend on where technologies are installed and which currency is used to calculate the learning rate. Using global data of large-scale photovoltaic (>= 5 MW) plants, we show that the currency choice can result in learning-rate differences of up to 16 percentage points. We then introduce an adjustment factor to correct for the effect of exchange rate and market focus fluctuations and discuss the implications of our findings for innovation scholars, energy modellers and decision makers.
Learning rates are a measure of reduction in costs of energy from technologies such as solar photovoltaics. These are often estimated internationally with all monetary figures converted to a single currency, often US dollars. Lilliestam et al. show that such conversions can significantly affect the learning rate estimates.}, language = {en} } @article{OllierMelligerLilliestam2020, author = {Ollier, Lana and Melliger, Marc Andr{\´e} and Lilliestam, Johan}, title = {Friends or foes?}, series = {Energies : open-access journal of related scientific research, technology development and studies in policy and management}, volume = {13}, journal = {Energies : open-access journal of related scientific research, technology development and studies in policy and management}, number = {23}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {10.3390/en13236339}, pages = {23}, year = {2020}, abstract = {Energy efficiency measures and the deployment of renewable energy are commonly presented as two sides of the same coin-as necessary and synergistic measures to decarbonize energy systems and reach the temperature goals of the Paris Agreement. Here, we quantitatively investigate the policies and performances of the EU Member States to see whether renewables and energy efficiency policies are politically synergistic or if they rather compete for political attention and resources. We find that Member States, especially the ones perceived as climate leaders, tend to prioritize renewables over energy efficiency in target setting. Further, almost every country performs well in either renewable energy or energy efficiency, but rarely performs well in both. We find no support for the assertion that the policies are synergistic, but some evidence that they compete. However, multi-linear regression models for performance show that performance, especially in energy efficiency, is also strongly associated with general economic growth cycles, and not only efficiency policy as such. We conclude that renewable energy and energy efficiency are not synergistic policies, and that there is some competition between them.}, language = {en} } @phdthesis{Melliger2024, author = {Melliger, Marc Andr{\´e}}, title = {Effects of exposing renewables to the market}, school = {Universit{\"a}t Potsdam}, pages = {xi, 139}, year = {2024}, abstract = {Electricity production contributes to a significant share of greenhouse gas emissions in Europe and is thus an important driver of climate change. To fulfil the Paris Agreement, the European Union (EU) needs a rapid transition to a fully decarbonised power production system. Presumably, such a system will be largely based on renewables. So far, many EU countries have supported a shift towards renewables such as solar and wind power using support schemes, but the economic and political context is changing. Renewables are now cheaper than ever before and have become cost-competitive with conventional technologies. Therefore, European policymakers are striving to better integrate renewables into a competitive market and to increase the cost-effectiveness of the expansion of renewables. The first step was to replace previous fixed-price schemes with competitive auctions. In a second step, these auctions have become more technology-open. Finally, some governments may phase out any support for renewables and fully expose them to the competitive power market. However, such policy changes may be at odds with the need to rapidly expand renewables and meet national targets due to market characteristics and investors' risk perception. Without support, price risks are higher, and it may be difficult to meet an investor's income expectations. Furthermore, policy changes across different countries could have unexpected effects if power markets are interconnected and investors able to shift their investments. Finally, in multi-technology auctions, technologies may dominate, which can be a risk for long-term power system reliability. Therefore, in my thesis, I explore the effects of phasing out support policies for renewables, of coordinating these phase-outs across countries, and of using multi-technology designs. I expand the public policy literature about investment behaviour and policy design as well as policy change and coordination, and I further develop an agent-based model. The main questions of my thesis are what the cost and deployment effects of gradually exposing renewables to market forces would be and how coordination between countries affects investors' decisions and market prices.. In my three contributions to the academic literature, I use different methods and come to the following results. In the first contribution, I use a conjoint analysis and market simulation to evaluate the effects of phasing out support or reintroducing feed-in tariffs from the perspective of investors. I find that a phase-out leads to investment shifts, either to other still-supported technologies or to other countries that continue to offer support. I conclude that the coordination of policy changes avoids such shifts.. In the second contribution, I integrate the empirically-derived preferences from the first contribution in to an agent-based power system model of two countries to simulate the effects of ending auctions for renewables. I find that this slows the energy transition, and that cross-border effects are relevant. Consequently, continued support is necessary to meet the national renewables targets. In the third contribution, I analyse the outcome of past multi-technology auctions using descriptive statistics, regression analysis as well as case study comparisons. I find that the outcomes are skewed towards single technologies. This cannot be explained by individual design elements of the auctions, but rather results from context-specific and country-specific characteristics. Based on this, I discuss potential implications for long-term power system reliability. The main conclusions of my thesis are that a complete phase-out of renewables support would slow down the energy transition and thus jeopardize climate targets, and that multi-technology auctions may pose a risk for some countries, especially those that cannot regulate an unbalanced power plant portfolio in the long term. If policymakers decide to continue supporting renewables, they may consider adopting technology-specific auctions to better steer their portfolio. In contrast, if policymakers still want to phase out support, they should coordinate these policy changes with other countries. Otherwise, overall transition costs can be higher, because investment decisions shift to still-supported but more expensive technologies.}, language = {en} } @article{MelligerLilliestam2021, author = {Melliger, Marc Andr{\´e} and Lilliestam, Johan}, title = {Effects of coordinating support policy changes on renewable power investor choices in Europe}, series = {Energy policy : the international journal of the political, economic, planning, environmental and social aspects of energy}, volume = {148}, journal = {Energy policy : the international journal of the political, economic, planning, environmental and social aspects of energy}, publisher = {Elsevier}, address = {Oxford}, issn = {0301-4215}, doi = {10.1016/j.enpol.2020.111993}, pages = {20}, year = {2021}, abstract = {The economic context for renewable power in Europe is shifting: feed-in tariffs are replaced by auctioned premiums as the main support schemes. As renewables approach competitiveness, political pressure mounts to phase out support, whereas some other actors perceive a need for continued fixed-price support. We investigate how the phase-out of support or the reintroduction of feed-in tariffs would affect investors' choices for renewables through a conjoint analysis. In particular, we analyse the impact of coordination - the simultaneousness - of policy changes across countries and technologies. We find that investment choices are not strongly affected if policy changes are coordinated and returns unaffected. However, if policy changes are uncoordinated, investments shift to still supported - less mature and costlier - technologies or countries where support remains or is reintroduced. This shift is particularly strong for large investors and could potentially skew the European power mix towards an over-reliance on a single, less mature technology or specific generation region, resulting in a more expensive power system. If European countries want to change their renewable power support policies, and especially if they phase out support and expose renewables to market competition, it is important that they coordinate their actions.}, language = {en} }