@article{LiuGouldKratzetal.2022, author = {Liu, Yue and Gould, Oliver E. C. and Kratz, Karl and Lendlein, Andreas}, title = {On demand sequential release of (sub)micron particles controlled by size and temperature}, series = {Small : nano micro}, volume = {18}, journal = {Small : nano micro}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1613-6810}, doi = {10.1002/smll.202104621}, pages = {8}, year = {2022}, abstract = {Polymeric devices capable of releasing submicron particles (subMP) on demand are highly desirable for controlled release systems, sensors, and smart surfaces. Here, a temperature-memory polymer sheet with a programmable smooth surface served as matrix to embed and release polystyrene subMP controlled by particle size and temperature. subMPs embedding at 80 degrees C can be released sequentially according to their size (diameter D of 200 nm, 500 nm, 1 mu m) when heated. The differences in their embedding extent are determined by the various subMPs sizes and result in their distinct release temperatures. Microparticles of the same size (D approximate to 1 mu m) incorporated in films at different programming temperatures T-p (50, 65, and 80 degrees C) lead to a sequential release based on the temperature-memory effect. The change of apparent height over the film surface is quantified using atomic force microscopy and the realization of sequential release is proven by confocal laser scanning microscopy. The demonstration and quantification of on demand subMP release are of technological impact for assembly, particle sorting, and release technologies in microtechnology, catalysis, and controlled release.}, language = {en} } @article{SauterKratzFarhanetal.2022, author = {Sauter, Tilman and Kratz, Karl and Farhan, Muhammad and Heuchel, Matthias and Lendlein, Andreas}, title = {Design and fabrication of fiber mesh actuators}, series = {Applied materials today}, volume = {29}, journal = {Applied materials today}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2352-9407}, doi = {10.1016/j.apmt.2022.101562}, pages = {13}, year = {2022}, abstract = {Soft actuator performance can be tuned by chemistry or mechanical manipulation, but this adjustability is limited especially in view of their growing technological relevance. Inspired from textile engineering, we designed and fabricated fiber mesh actuators and introduced new features like anisotropic behavior and soft-tissue like elastic deformability. Design criteria for the meshes are the formation of fiber bundles, the angle between fiber bundles in different stacked layers and covalent crosslinks forming within and between fibers at their interfacial contact areas. Through crosslinking the interfiber bond strength increased from a bond transmitting neither axial nor rotational loads (pin joint) to a bond strength capable of both (welded joint). For non-linear elastic stiffening, stacked fiber bundles with four embracing fibers were created forming microstructural rhombus shapes. Loading the rhombus diagonally allowed generation of "soft tissue"-like mechanics. By adjustment of stacking angles, the point of strong increase in stress is tuned. While the highest stresses are observed in aligned and crosslinked fiber mats along the direction of the fiber, the strongest shape-memory actuation behavior is found in randomly oriented fiber mats. Fiber mesh actuators controlled by temperature are of high significance as soft robot skins and as for active patches supporting tissue regeneration.}, language = {en} } @article{TungMaringXuetal.2022, author = {Tung, Wing Tai and Maring, Janita A. and Xu, Xun and Liu, Yue and Becker, Matthias and Somesh, Dipthi Bachamanda and Klose, Kristin and Wang, Weiwei and Sun, Xianlei and Ullah, Imran and Kratz, Karl and Neffe, Axel T. and Stamm, Christof and Ma, Nan and Lendlein, Andreas}, title = {In vivo performance of a cell and factor free multifunctional fiber mesh modulating postinfarct myocardial remodeling}, series = {Advanced Functional Materials}, volume = {32}, journal = {Advanced Functional Materials}, number = {31}, publisher = {Wiley}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.202110179}, pages = {17}, year = {2022}, abstract = {Guidance of postinfarct myocardial remodeling processes by an epicardial patch system may alleviate the consequences of ischemic heart disease. As macrophages are highly relevant in balancing immune response and regenerative processes their suitable instruction would ensure therapeutic success. A polymeric mesh capable of attracting and instructing monocytes by purely physical cues and accelerating implant degradation at the cell/implant interface is designed. In a murine model for myocardial infarction the meshes are compared to those either coated with extracellular matrix or loaded with induced cardiomyocyte progenitor cells. All implants promote macrophage infiltration and polarization in the epicardium, which is verified by in vitro experiments. 6 weeks post-MI, especially the implantation of the mesh attenuates left ventricular adverse remodeling processes as shown by reduced infarct size (14.7\% vs 28-32\%) and increased wall thickness (854 mu m vs 400-600 mu m), enhanced angiogenesis/arteriogenesis (more than 50\% increase compared to controls and other groups), and improved heart function (ejection fraction = 36.8\% compared to 12.7-31.3\%). Upscaling as well as process controls is comprehensively considered in the presented mesh fabrication scheme to warrant further progression from bench to bedside.}, language = {en} }