@article{MakowiczTiedemannSteeleetal.2016, author = {Makowicz, Amber M. and Tiedemann, Ralph and Steele, Rachel N. and Schlupp, Ingo}, title = {Kin Recognition in a Clonal Fish, Poecilia formosa}, series = {PLoS one}, volume = {11}, journal = {PLoS one}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0158442}, pages = {20}, year = {2016}, abstract = {Relatedness strongly influences social behaviors in a wide variety of species. For most species, the highest typical degree of relatedness is between full siblings with 50\% shared genes. However, this is poorly understood in species with unusually high relatedness between individuals: clonal organisms. Although there has been some investigation into clonal invertebrates and yeast, nothing is known about kin selection in clonal vertebrates. We show that a clonal fish, the Amazon molly (Poecilia formosa), can distinguish between different clonal lineages, associating with genetically identical, sister clones, and use multiple sensory modalities. Also, they scale their aggressive behaviors according to the relatedness to other females: they are more aggressive to non-related clones. Our results demonstrate that even in species with very small genetic differences between individuals, kin recognition can be adaptive. Their discriminatory abilities and regulation of costly behaviors provides a powerful example of natural selection in species with limited genetic diversity.}, language = {en} } @misc{MakowiczTiedemannSteeleetal.2016, author = {Makowicz, Amber M. and Tiedemann, Ralph and Steele, Rachel N. and Schlupp, Ingo}, title = {Kin recognition in a clonal fish, Poecilia formosa}, series = {PLoS ONE}, journal = {PLoS ONE}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-411329}, pages = {20}, year = {2016}, abstract = {Relatedness strongly influences social behaviors in a wide variety of species. For most species, the highest typical degree of relatedness is between full siblings with 50\% shared genes. However, this is poorly understood in species with unusually high relatedness between individuals: clonal organisms. Although there has been some investigation into clonal invertebrates and yeast, nothing is known about kin selection in clonal vertebrates. We show that a clonal fish, the Amazon molly (Poecilia formosa), can distinguish between different clonal lineages, associating with genetically identical, sister clones, and use multiple sensory modalities. Also, they scale their aggressive behaviors according to the relatedness to other females: they are more aggressive to non-related clones. Our results demonstrate that even in species with very small genetic differences between individuals, kin recognition can be adaptive. Their discriminatory abilities and regulation of costly behaviors provides a powerful example of natural selection in species with limited genetic diversity.}, language = {en} } @article{McCoySyskaPlathetal.2011, author = {McCoy, Ellen and Syska, Norbert and Plath, Martin and Schlupp, Ingo and Riesch, R{\"u}diger}, title = {Mustached males in a tropical poeciliid fish - emerging female preference selects for a novel male trait}, series = {Behavioral ecology and sociobiology}, volume = {65}, journal = {Behavioral ecology and sociobiology}, number = {7}, publisher = {Springer}, address = {New York}, issn = {0340-5443}, doi = {10.1007/s00265-011-1154-x}, pages = {1437 -- 1445}, year = {2011}, abstract = {One possible mechanism for the (co-)evolution of seemingly novel male traits and female preferences for them is that males exploit pre-existing female biases, and livebearing fishes (Poeciliidae) have been at the forefront of this research for almost two decades. Here, using 13 poeciliid species from four different genera, we tested whether mustache-like rostral filaments found in males of some Mexican molly (Poecilia sphenops) populations could have evolved due to exploitation of a pre-existing female bias. While Mexican mollies were the only species with a significant female association preference for mustached males, we also did not find any species exhibiting significant aversion for mustached males; rather, variance in female preference scores was large throughout. For example, more than 25\% of females spent twice as much time with the mustached male compared to the non-mustached male in most species, but even 31\% of Mexican molly females spent more time near the non-mustached male. Hence, a comparison of the strength of preference was inconclusive. We discuss the possibility that the female preference of P. sphenops for mustached males could be due to a female pre-existing bias (sensu lato), even if population means were not significant for species other than P. sphenops. This highlights the importance of distinguishing between population means and individual preferences when interpreting mate choice, and thus, adds depth to the concept of mating preferences as a motor for evolutionary change.}, language = {en} } @misc{PlathHermannSchroederetal.2010, author = {Plath, Martin and Hermann, Bernd and Schr{\"o}der, Christine and Riesch, R{\"u}diger and Tobler, Michael and Garc{\´i}a de Le{\´o}n, Francisco J. and Schlupp, Ingo and Tiedemann, Ralph}, title = {Locally adapted fish populations maintain small-scale genetic differentiation despite perturbation by a catastrophic flood event}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-48599}, year = {2010}, abstract = {Background: Local adaptation to divergent environmental conditions can promote population genetic differentiation even in the absence of geographic barriers and hence, lead to speciation. Perturbations by catastrophic events, however, can distort such parapatric ecological speciation processes. Here, we asked whether an exceptionally strong flood led to homogenization of gene pools among locally adapted populations of the Atlantic molly (Poecilia mexicana, Poeciliidae) in the Cueva del Azufre system in southern Mexico, where two strong environmental selection factors (darkness within caves and/or presence of toxic H2S in sulfidic springs) drive the diversification of P. mexicana. Nine nuclear microsatellites as well as heritable female life history traits (both as a proxy for quantitative genetics and for trait divergence) were used as markers to compare genetic differentiation, genetic diversity, and especially population mixing (immigration and emigration) before and after the flood. Results: Habitat type (i.e., non-sulfidic surface, sulfidic surface, or sulfidic cave), but not geographic distance was the major predictor of genetic differentiation. Before and after the flood, each habitat type harbored a genetically distinct population. Only a weak signal of individual dislocation among ecologically divergent habitat types was uncovered (with the exception of slightly increased dislocation from the Cueva del Azufre into the sulfidic creek, El Azufre). By contrast, several lines of evidence are indicative of increased flood-induced dislocation within the same habitat type, e.g., between different cave chambers of the Cueva del Azufre. Conclusions: The virtual absence of individual dislocation among ecologically different habitat types indicates strong natural selection against migrants. Thus, our current study exemplifies that ecological speciation in this and other systems, in which extreme environmental factors drive speciation, may be little affected by temporary perturbations, as adaptations to physico-chemical stressors may directly affect the survival probability in divergent habitat types.}, language = {en} } @article{PlathRohdeSchroederetal.2006, author = {Plath, Martin and Rohde, Matthias and Schr{\"o}der, Thekla and Taebel-Hellwig, Angelika and Schlupp, Ingo}, title = {Female mating preferences in blind cave tetras Astyanax fasciatus (Characidae, Teleostei)}, issn = {0005-7959}, doi = {10.1163/156853906775133560}, year = {2006}, abstract = {The Mexican tetra Astyanax fasciatus has evolved a variety of more or less color- and eyeless cave populations. Here we examined the evolution of the female preference for large male body size within different populations of this species, either surface- or cave-dwelling. Given the choice between visual cues from a large and a small male, females from the surface form as well as females from an eyed cave form showed a strong preference for large males. When only non-visual cues were presented in darkness, the surface females did not prefer either males. Among the six cave populations studied, females of the eyed cave form and females of one of the five eyeless cave populations showed a preference for large males. Apparently, not all cave populations of Astyanax have evolved non-visual mating preferences. We discuss the role of selection by benefits of non-visual mate choice for the evolution of non-visual mating preferences}, language = {en} } @article{PlathSeggelBurmeisteretal.2006, author = {Plath, Martin and Seggel, Uta and Burmeister, Heike and Heubel, Katja U. and Schlupp, Ingo}, title = {Choosy males from the underground : male mating preferences in surface- and cave-dwelling Atlantic mollies (Poecilia mexicana)}, doi = {10.1007/s00114-005-0072-z}, year = {2006}, abstract = {Atlantic mollies (Poecilia mexicana) inhabit a variety of surface habitats, but they also occur in a sulfur cave in southern Mexico. We examined male mate choice relative to female body size in the cave population and in the most closely related surface-dwelling population from a nearby river. Males from both populations were either light- or dark-reared and could choose between two differently sized females either on the basis of visual cues in light or on the basis of solely nonvisual cues in darkness. Sexual preferences were estimated from the degree of association. Cave molly males always showed a preference for the larger female, both in light and in darkness. Among the surface males, only light-reared males showed a preference in the visual cues test, but not in darkness. In a control experiment, we demonstrated that male association preferences directly translate into actual mating preferences. Apparently, using visual cues for mate choice is the ancestral state in this system, and using nonvisual cues has evolved as a novel trait in the cave population. We discuss the evolution of nonvisual male mate choice in the context of changed environmental conditions, namely the absence of light, hypoxia, and toxic hydrogen sulfide in the cave}, language = {en} } @article{RieschSchluppTobleretal.2006, author = {Riesch, R{\"u}diger and Schlupp, Ingo and Tobler, Michael and Plath, Martin}, title = {Reduction of the association preference for conspecifics in cave-dwelling Atlantic mollies, Poecilia mexicana}, series = {Behavioral ecology and sociobiology}, volume = {60}, journal = {Behavioral ecology and sociobiology}, publisher = {Springer}, address = {New York}, issn = {0340-5443}, doi = {10.1007/s00265-006-0223-z}, pages = {794 -- 802}, year = {2006}, abstract = {Cave animals are widely recognised as model organisms to study regressive evolutionary processes like the reduction of eyes. In this paper, we report on the regressive evolution of species discrimination in the cave molly, Poecilia mexicana, which, unlike other cave fishes, still has functional eyes. This allowed us to examine the response to both visual and non-visual cues involved in species discrimination. When surface-dwelling females were given a chance to associate with either a conspecific or a swordtail (Xiphophorus hellerii) female, they strongly preferred the conspecific female both when multiple cues and when solely visual cues were available to the female. No association preference was observed when only non-visual cues were provided. In contrast, cave-dwelling females showed no preference under all testing conditions, suggesting that species recognition mechanisms have been reduced. We discuss the role of species discrimination in relation to habitat differences.}, language = {en} } @article{RieschToblerPlathetal.2009, author = {Riesch, R{\"u}diger and Tobler, Michael and Plath, Martin and Schlupp, Ingo}, title = {Offspring number in a livebearing fish (Poecilia mexicana, Poeciliidae) : reduced fecundity and reduced plasticity in a population of cave mollies}, issn = {0378-1909}, doi = {10.1007/s10641-008-9392-0}, year = {2009}, abstract = {Life history traits within species often vary among different habitats. We measured female fecundity in mollies (Poecilia mexicana) from a H2S-rich cave and from a neighbouring surface habitat, as well as in laboratory-reared individuals of both populations raised in either light or continuous darkness. Compared to conspecifics from surface habitats, cave-dwelling P. mexicana had reduced fecundity (adjusted for size) in the field. In the laboratory, the fecundity of surface mollies was higher in light than in darkness, whereas fecundity in the cave mollies was almost unaffected by the ambient light conditions. Our results suggest a heritable component to the reduction in fecundity in female cave mollies. Moreover, the reduced plasticity in fecundity of cave mollies in response to light conditions might be an example of genetic assimilation or channelling of a life history trait in a population invading a new environment.}, language = {en} } @article{SchedinaGrothSchluppetal.2018, author = {Schedina, Ina Maria and Groth, Detlef and Schlupp, Ingo and Tiedemann, Ralph}, title = {The gonadal transcriptome of the unisexual Amazon molly Poecilia formosa in comparison to its sexual ancestors, Poecilia mexicana and Poecilia latipinna}, series = {BMC Genomics}, volume = {19}, journal = {BMC Genomics}, number = {12}, publisher = {BioMed Central}, address = {London}, issn = {1471-2164}, doi = {10.1186/s12864-017-4382-2}, pages = {1 -- 18}, year = {2018}, abstract = {Background The unisexual Amazon molly (Poecilia formosa) originated from a hybridization between two sexual species, the sailfin molly (Poecilia latipinna) and the Atlantic molly (Poecilia mexicana). The Amazon molly reproduces clonally via sperm-dependent parthenogenesis (gynogenesis), in which the sperm of closely related species triggers embryogenesis of the apomictic oocytes, but typically does not contribute genetic material to the next generation. We compare for the first time the gonadal transcriptome of the Amazon molly to those of both ancestral species, P. mexicana and P. latipinna. Results We sequenced the gonadal transcriptomes of the P. formosa and its parental species P. mexicana and P. latipinna using Illumina RNA-sequencing techniques (paired-end, 100 bp). De novo assembly of about 50 million raw read pairs for each species was performed using Trinity, yielding 106,922 transcripts for P. formosa, 115,175 for P. latipinna, and 133,025 for P. mexicana after eliminating contaminations. On the basis of sequence similarity comparisons to other teleost species and the UniProt databases, functional annotation, and differential expression analysis, we demonstrate the similarity of the transcriptomes among the three species. More than 40\% of the transcripts for each species were functionally annotated and about 70\% were assigned to orthologous genes of a closely related species. Differential expression analysis between the sexual and unisexual species uncovered 2035 up-regulated and 564 down-regulated genes in P. formosa. This was exemplary validated for six genes by qRT-PCR. Conclusions We identified more than 130 genes related to meiosis and reproduction within the apomictically reproducing P. formosa. Overall expression of these genes seems to be down-regulated in the P. formosa transcriptome compared to both ancestral species (i.e., 106 genes down-regulated, 29 up-regulated). A further 35 meiosis and reproduction related genes were not found in the P. formosa transcriptome, but were only expressed in the sexual species. Our data support the hypothesis of general down-regulation of meiosis-related genes in the apomictic Amazon molly. Furthermore, the obtained dataset and identified gene catalog will serve as a resource for future research on the molecular mechanisms behind the reproductive mode of this unisexual species.}, language = {en} } @misc{SchedinaGrothSchluppetal.2018, author = {Schedina, Ina Maria and Groth, Detlef and Schlupp, Ingo and Tiedemann, Ralph}, title = {The gonadal transcriptome of the unisexual Amazon molly Poecilia formosa in comparison to its sexual ancestors, Poecilia mexicana and Poecilia latipinna}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-409299}, pages = {18}, year = {2018}, abstract = {Abstract Background The unisexual Amazon molly (Poecilia formosa) originated from a hybridization between two sexual species, the sailfin molly (Poecilia latipinna) and the Atlantic molly (Poecilia mexicana). The Amazon molly reproduces clonally via sperm-dependent parthenogenesis (gynogenesis), in which the sperm of closely related species triggers embryogenesis of the apomictic oocytes, but typically does not contribute genetic material to the next generation. We compare for the first time the gonadal transcriptome of the Amazon molly to those of both ancestral species, P. mexicana and P. latipinna. Results We sequenced the gonadal transcriptomes of the P. formosa and its parental species P. mexicana and P. latipinna using Illumina RNA-sequencing techniques (paired-end, 100 bp). De novo assembly of about 50 million raw read pairs for each species was performed using Trinity, yielding 106,922 transcripts for P. formosa, 115,175 for P. latipinna, and 133,025 for P. mexicana after eliminating contaminations. On the basis of sequence similarity comparisons to other teleost species and the UniProt databases, functional annotation, and differential expression analysis, we demonstrate the similarity of the transcriptomes among the three species. More than 40\% of the transcripts for each species were functionally annotated and about 70\% were assigned to orthologous genes of a closely related species. Differential expression analysis between the sexual and unisexual species uncovered 2035 up-regulated and 564 down-regulated genes in P. formosa. This was exemplary validated for six genes by qRT-PCR. Conclusions We identified more than 130 genes related to meiosis and reproduction within the apomictically reproducing P. formosa. Overall expression of these genes seems to be down-regulated in the P. formosa transcriptome compared to both ancestral species (i.e., 106 genes down-regulated, 29 up-regulated). A further 35 meiosis and reproduction related genes were not found in the P. formosa transcriptome, but were only expressed in the sexual species. Our data support the hypothesis of general down-regulation of meiosis-related genes in the apomictic Amazon molly. Furthermore, the obtained dataset and identified gene catalog will serve as a resource for future research on the molecular mechanisms behind the reproductive mode of this unisexual species.}, language = {en} }