@article{MillerCionideGrijsetal.2022, author = {Miller, Amy E. and Cioni, Maria-Rosa L. and de Grijs, Richard and Sun, Ning-Chen and Bell, Cameron P. M. and Choudhury, Samyaday and Ivanov, Valentin D. and Marconi, Marcella and Oliveira, Joana M. and Petr-Gotzens, Monika and Ripepi, Vincenzo and van Loon, Jacco Th.}, title = {The VMC survey - XLVII. Turbulence-controlled hierarchical star formation in the large magellanic cloud}, series = {Monthly notices of the Royal Astronomical Society}, volume = {512}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac508}, pages = {1196 -- 1213}, year = {2022}, abstract = {We perform a statistical clustering analysis of upper main-sequence stars in the Large Magellanic Cloud (LMC) using data from the Visible and Infrared Survey Telescope for Astronomy survey of the Magellanic Clouds. We map over 2500 young stellar structures at 15 significance levels across similar to 120 square degrees centred on the LMC. The structures have sizes ranging from a few parsecs to over 1 kpc. We find that the young structures follow power-law size and mass distributions. From the perimeter-area relation, we derive a perimeter-area dimension of 1.44 +/- 0.20. From the mass-size relation and the size distribution, we derive two-dimensional fractal dimensions of 1.50 +/- 0.10 and 1.61 +/- 0.20, respectively. We find that the surface density distribution is well represented by a lognormal distribution. We apply the Larson relation to estimate the velocity dispersions and crossing times of these structures. Our results indicate that the fractal nature of the young stellar structures has been inherited from the gas clouds from which they form and that this architecture is generated by supersonic turbulence. Our results also suggest that star formation in the LMC is scale-free from 10 to 700 pc.}, language = {en} }