@article{BaerGrossmannHeidenreichetal.2019, author = {B{\"a}r, Markus and Großmann, Robert and Heidenreich, Sebastian and Peruani, Fernando}, title = {Self-propelled rods}, series = {Annual review of condensed matter physics}, volume = {11}, journal = {Annual review of condensed matter physics}, publisher = {Annual Reviews}, address = {Palo Alto}, issn = {1947-5454}, doi = {10.1146/annurev-conmatphys-031119-050611}, pages = {441 -- 466}, year = {2019}, abstract = {A wide range of experimental systems including gliding, swarming and swimming bacteria, in vitro motility assays, and shaken granular media are commonly described as self-propelled rods. Large ensembles of those entities display a large variety of self-organized, collective phenomena, including the formation of moving polar clusters, polar and nematic dynamic bands, mobility-induced phase separation, topological defects, and mesoscale turbulence, among others. Here, we give a brief survey of experimental observations and review the theoretical description of self-propelled rods. Our focus is on the emergent pattern formation of ensembles of dry self-propelled rods governed by short-ranged, contact mediated interactions and their wet counterparts that are also subject to long-ranged hydrodynamic flows. Altogether, self-propelled rods provide an overarching theme covering many aspects of active matter containing well-explored limiting cases. Their collective behavior not only bridges the well-studied regimes of polar selfpropelled particles and active nematics, and includes active phase separation, but also reveals a rich variety of new patterns.}, language = {en} }