@article{HamaguchiOskinovaRusselletal.2016, author = {Hamaguchi, K. and Oskinova, Lida and Russell, C. M. P. and Petre, R. and Enoto, T. and Morihana, K. and Ishida, M.}, title = {DISCOVERY OF RAPIDLY MOVING PARTIAL X-RAY ABSORBERS WITHIN GAMMA CASSIOPEIAE}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {832}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/0004-637X/832/2/140}, pages = {33 -- 49}, year = {2016}, abstract = {detected six rapid X-ray spectral hardening events called "softness dips" in a similar to 100 ks observation in 2011. All the softness dip events show symmetric softness-ratio variations, and some of them have flat bottoms apparently due to saturation. The softness dip spectra are best described by either similar to 40\% or similar to 70\% partial covering absorption to kT similar to 12 keV plasma emission by matter with a neutral hydrogen column density of similar to(2-8) x 10(21) cm(-2), while the spectrum outside these dips is almost free of absorption. This result suggests the presence of two distinct X-ray-emitting spots in the.. Cas system, perhaps on a white dwarf (WD) companion with dipole mass accretion. The partial covering absorbers may be blobs in the Be stellar wind, the Be disk, or rotating around the WD companion. Weak correlations of the softness ratios to the hard X-ray flux suggest the presence of stable plasmas at kT similar to 0.9 and 5 keV, which may originate from the Be or WD winds. The formation of a Be star and WD binary system requires mass transfer between two stars; gamma Cas may have experienced such activity in the past.}, language = {en} }