@article{DurandBentzKwiateketal.2020, author = {Durand, Virginie and Bentz, Stephan and Kwiatek, Grzegorz and Dresen, Georg and Wollin, Christopher and Heidbach, Oliver and Martinez-Garzon, Patricia and Cotton, Fabrice Pierre and Nurlu, Murat and Bohnhoff, Marco}, title = {A two-scale preparation phase preceded an M-w 5.8 earthquake in the sea of marmara offshore Istanbul, Turkey}, series = {Seismological research letters}, volume = {91}, journal = {Seismological research letters}, number = {6}, address = {Boulder}, issn = {0895-0695}, doi = {10.1785/0220200110}, pages = {3139 -- 3147}, year = {2020}, abstract = {We analyze the spatiotemporal evolution of seismicity during a sequence of moderate (an M-w 4.7 foreshock and M-w 5.8 mainshock) earthquakes occurring in September 2019 at the transition between a creeping and a locked segment of the North Anatolian fault in the central Sea of Marmara, northwest Turkey. To investigate in detail the seismicity evolution, we apply a matched-filter technique to continuous waveforms, thus reducing the magnitude threshold for detection. Sequences of foreshocks preceding the two largest events are clearly seen, exhibiting two different behaviors: a long-term activation of the seismicity along the entire fault segment and a short-term concentration around the epicenters of the large events. We suggest a two-scale preparation phase, with aseismic slip preparing the mainshock final rupture a few days before, and a cascade mechanism leading to the nucleation of the mainshock. Thus, our study shows a combination of seismic and aseismic slip during the foreshock sequence changing the strength of the fault, bringing it closer to failure.}, language = {en} }