@article{KupschMuellerLangeetal.2017, author = {Kupsch, Andreas and Mueller, Bernd R. and Lange, Axel and Bruno, Giovanni}, title = {Microstructure characterisation of ceramics via 2D and 3D X-ray refraction techniques}, series = {Journal of the European Ceramic Society}, volume = {37}, journal = {Journal of the European Ceramic Society}, publisher = {Elsevier}, address = {Oxford}, issn = {0955-2219}, doi = {10.1016/j.jeurceramsoc.2016.12.031}, pages = {1879 -- 1889}, year = {2017}, abstract = {3D imaging techniques are very fashionable nowadays, and allow enormous progress in understanding ceramic microstructure, its evolution, and its link to mechanical, thermal, and transport properties. In this feature article, we report the use of a powerful, yet not so wide-spread, set of X-ray techniques based on refraction effects. X-ray refraction allows determining internal specific surface (surface per unit volume) in a non-destructive fashion, position and orientation sensitive, and with a nanometric detectability. While the techniques are limited by the X-ray absorption of the material under investigation, we demonstrate showcases of ceramics and composite materials, where understanding of process parameter influence or simply of microstructural parameters could be achieved in a way unrivalled even by high-resolution techniques such as electron microscopy or computed tomography. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} }