@article{TodtPenaHamannetal.2010, author = {Todt, Helge Tobias and Pena, Maria A. and Hamann, Wolf-Rainer and Gr{\"a}fener, G{\"o}tz}, title = {The central star of the planetary nebula PB8 : a Wolf-Rayet-type wind of an unusual WN/WC chemical composition}, issn = {0004-6361}, doi = {10.1051/0004-6361/200912183}, year = {2010}, abstract = {A considerable fraction of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient. As a rule, these CSPNe exhibit a chemical composition of helium, carbon, and oxygen with the majority showing Wolf-Rayet-like emission line spectra. These stars are classified as CSPNe of a spectral type [WC]. We perform a spectral analysis of CSPN PB 8 with the Potsdam Wolf-Rayet (PoWR) models for expanding atmospheres. The source PB8 displays wind-broadened emission lines from strong mass loss. Most strikingly, we find that its surface composition is hydrogen-deficient, but not carbon-rich. With mass fractions of 55\% helium, 40\% hydrogen, 1.3\% carbon, 2\% nitrogen, and 1.3\% oxygen, it differs greatly from the 30-50\% of carbon which are typically seen in [WC]-type central stars. The atmospheric mixture in PB8 has an analogy in the WN/WC transition type among the massive Wolf-Rayet stars. Therefore we suggest to introduce a new spectral type [WN/WC] for CSPNe, with PB8 as its first member. The central star of PB8 has a relatively low temperature of T-* = 52 kK, as expected for central stars in their early evolutionary stages. Its surrounding nebula is less than 3000 years old, i.e. relatively young. Existing calculations for the post-AGB evolution can produce hydrogen-deficient stars of the [WC] type, but do not predict the composition found in PB8. We discuss various scenarios that might explain the origin of this unique object.}, language = {en} }