TY - JOUR A1 - Engbert, Ralf A1 - Rabe, Maximilian Michael A1 - Kliegl, Reinhold A1 - Reich, Sebastian T1 - Sequential data assimilation of the stochastic SEIR epidemic model for regional COVID-19 dynamics T2 - Bulletin of mathematical biology : official journal of the Society for Mathematical Biology N2 - Newly emerging pandemics like COVID-19 call for predictive models to implement precisely tuned responses to limit their deep impact on society. Standard epidemic models provide a theoretically well-founded dynamical description of disease incidence. For COVID-19 with infectiousness peaking before and at symptom onset, the SEIR model explains the hidden build-up of exposed individuals which creates challenges for containment strategies. However, spatial heterogeneity raises questions about the adequacy of modeling epidemic outbreaks on the level of a whole country. Here, we show that by applying sequential data assimilation to the stochastic SEIR epidemic model, we can capture the dynamic behavior of outbreaks on a regional level. Regional modeling, with relatively low numbers of infected and demographic noise, accounts for both spatial heterogeneity and stochasticity. Based on adapted models, short-term predictions can be achieved. Thus, with the help of these sequential data assimilation methods, more realistic epidemic models are within reach. KW - Stochastic epidemic model KW - Sequential data assimilation KW - Ensemble Kalman KW - filter KW - COVID-19 Y1 - 2020 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/57108 SN - 0092-8240 SN - 1522-9602 VL - 83 IS - 1 PB - Springer CY - New York ER -