TY - JOUR A1 - Fang, Peng A1 - Ma, Xingchen A1 - Li, Xiangxin A1 - Qiu, Xunlin A1 - Gerhard, Reimund A1 - Zhang, Xiaoqing A1 - Li, Guanglin T1 - Fabrication, Structure Characterization, and Performance Testing of Piezoelectret-Film Sensors for Recording Body Motion T2 - IEEE Sensors Journal N2 - During muscle contractions, radial-force distributions are generated on muscle surfaces due to muscle-volume changes, from which the corresponding body motions can be recorded by means of so-called force myography (FMG). Piezo- or ferroelectrets are flexible piezoelectric materials with attractive materials and sensing properties. In addition to several other applications, they are suitable for detecting force variations by means of wearable devices. In this paper, we prepared piezoelectrets from cellular polypropylene films by optimizing the fabrication procedures, and developed an FMG-recording system based on piezoelectret sensors. Different hand and wrist movements were successfully detected on able-bodied subjects with the FMG system. The FMG patterns were evaluated and identified by means of linear discriminant analysis and artificial neural network algorithms, and average motion-classification accuracies of 96.1% and 94.8%, respectively, were obtained. This paper demonstrates the feasibility of using piezoelectret-film sensors for FMG and may thus lead to alternative methods for detecting body motion and to related applications, e.g., in biomedical engineering or structural-health monitoring. KW - Forcemyography KW - motion registration KW - piezoelectret KW - film sensor KW - wearable Y1 - 2017 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/54703 SN - 1530-437X SN - 1558-1748 VL - 18 IS - 1 SP - 401 EP - 412 PB - Inst. of Electr. and Electronics Engineers CY - Piscataway ER -