TY - JOUR A1 - Xu, Yong A1 - Liu, Xuemei A1 - Li, Yongge A1 - Metzler, Ralf T1 - Heterogeneous diffusion processes and nonergodicity with Gaussian colored noise in layered diffusivity landscapes T2 - Physical review : E, Statistical, nonlinear and soft matter physics N2 - Heterogeneous diffusion processes (HDPs) with space-dependent diffusion coefficients D(x) are found in a number of real-world systems, such as for diffusion of macromolecules or submicron tracers in biological cells. Here, we examine HDPs in quenched-disorder systems with Gaussian colored noise (GCN) characterized by a diffusion coefficient with a power-law dependence on the particle position and with a spatially random scaling exponent. Typically, D(x) is considered to be centerd at the origin and the entire x axis is characterized by a single scaling exponent a. In this work we consider a spatially random scenario: in periodic intervals ("layers") in space D(x) is centerd to the midpoint of each interval. In each interval the scaling exponent alpha is randomly chosen from a Gaussian distribution. The effects of the variation of the scaling exponents, the periodicity of the domains ("layer thickness") of the diffusion coefficient in this stratified system, and the correlation time of the GCN are analyzed numerically in detail. We discuss the regimes of superdiffusion, subdiffusion, and normal diffusion realisable in this system. We observe and quantify the domains where nonergodic and non-Gaussian behaviors emerge in this system. Our results provide new insights into the understanding of weak ergodicity breaking for HDPs driven by colored noise, with potential applications in quenched layered systems, typical model systems for diffusion in biological cells and tissues, as well as for diffusion in geophysical systems. Y1 - 2020 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/60180 SN - 2470-0045 SN - 2470-0053 VL - 102 IS - 6 PB - American Physical Society CY - College Park ER -